Publications by authors named "Nur Hidayah Jamar"

3 Publications

  • Page 1 of 1

The effects of Piper sarmentosum aqueous extracts on zebrafish (Danio rerio) embryos and caudal fin tissue regeneration.

Sci Rep 2020 08 25;10(1):14165. Epub 2020 Aug 25.

Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.

In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P. sarmentosum aqueous extracts. The phytochemical components and antioxidant activity of the extract were studied using GC-MS analysis and DPPH assay, respectively. Embryo toxicity tests involving survival, heartbeat, and morphological analyses were conducted to determine P. sarmentosum extract toxicity (0-60 µg/mL); concentrations of 0-400 µg/mL of the extract were used to study tissue regeneration in the zebrafish caudal fin. The extract contained several phytochemicals with antioxidant activity and exhibited DPPH scavenging activity (IC = 50.56 mg/mL). Embryo toxicity assays showed that a concentration of 60 μg/mL showed the highest rates of lethality regardless of exposure time. Slower embryogenesis was observed at 40 µg/mL, with non-viable embryos first detected at 50 µg/mL. Extracts showed significant differences (p < 0.01) for tissue regeneration at all concentrations when compared to non-treated samples. In conclusion, Piper sarmentosum extracts accelerated tissue regeneration, and extract concentrations at 60 µg/mL showed the highest toxicity levels for embryo viability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-70962-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447815PMC
August 2020

Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish () Embryos.

Toxics 2018 Oct 9;6(4). Epub 2018 Oct 9.

Danish Cancer Society Research Centre, Strandboulevarden 49, 2100 Copenhagen, Denmark.

Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics6040060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316214PMC
October 2018

Loss of mRNA surveillance pathways results in widespread protein aggregation.

Sci Rep 2018 03 1;8(1):3894. Epub 2018 Mar 1.

Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.

Eukaryotic cells contain translation-associated mRNA surveillance pathways which prevent the production of potentially toxic proteins from aberrant mRNA translation events. We found that loss of mRNA surveillance pathways in mutants deficient in nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD) results in increased protein aggregation. We have isolated and identified the proteins that aggregate and our bioinformatic analyses indicates that increased aggregation of aggregation-prone proteins is a general occurrence in mRNA surveillance mutants, rather than being attributable to specific pathways. The proteins that aggregate in mRNA surveillance mutants tend to be more highly expressed, more abundant and more stable proteins compared with the wider proteome. There is also a strong correlation with the proteins that aggregate in response to nascent protein misfolding and an enrichment for proteins that are substrates of ribosome-associated Hsp70 chaperones, consistent with susceptibility for aggregation primarily occurring during translation/folding. We also identified a significant overlap between the aggregated proteins in mRNA surveillance mutants and ageing yeast cells suggesting that translation-dependent protein aggregation may be a feature of the loss of proteostasis that occurs in aged cell populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-22183-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832753PMC
March 2018