Publications by authors named "Nunzia La Maida"

10 Publications

  • Page 1 of 1

Acute Pharmacological Effects and Oral Fluid Concentrations of the Synthetic Cannabinoids JWH-122 and JWH-210 in Humans After Self-Administration: An Observational Study.

Front Pharmacol 2021 19;12:705643. Epub 2021 Aug 19.

Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Barcelona, Spain.

Synthetic cannabinoids (SCs) are a group of new psychoactive drugs used recreationally with potential health risks. They are monitored by the EU Early Warning System since 2010 due to severe adverse effects on consumers. JWH-122 and JWH-210 are naphthoylindole SCs and potent cannabinoid receptor CB1 and CB2 agonists. Information about the effects of SCs usually is available from intoxication cases and surveys, and few studies on humans after controlled administration or observational/naturalistic studies using standardized measures of cardiovascular and subjective effects are available. The aim of this study was to evaluate the acute pharmacological effects of JWH-122 and JWH-210 recreational consumption in a 4 h observational study and assess their disposition in oral fluid (OF). Sixteen volunteers self-administered 1 mg dose of JWH-122 ( = 8) or 2.25 mg mean dose of JWH-210 (range 2-3 mg, = 8) by inhalation (smoking). Physiological parameters including blood pressure (systolic and diastolic), heart rate (HR), and cutaneous temperature were measured. A set of visual analog scales, the 49-item short-form version of the Addiction Research Center Inventory (ARCI), and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) were used for the evaluation of subjective effects. OF was collected at baseline and at 10, 20, and 40 min and 1, 2, 3, and 4 h after self-administration. Statistically significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR were observed after JWH-122 self-administration but not after JWH-210 self-administration. JWH-210 self-administration produced significant changes in subjective drug effects, similar to those induced by THC (intensity, high, good effects, and hunger). The subjective effects following JWH-122 consumption were minimal. The maximal effects were mostly observed 20 min after intake. JWH-122 and JWH 210 OF concentration reached a peak 20 min after administration and could not be detected after 3 h. The results demonstrated a different pattern of effects of these two SCs. Due to the limitations of our observational study, further research with a larger sample and controlled studies are needed to better define the acute pharmacological effect and health risk profile of JWH-122 and JWH-210.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2021.705643DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417402PMC
August 2021

Optimization of a rapid sample pretreatment for the quantification of COCAINE and its main metabolites in hair through a new and validated GC-MS/MS method.

J Pharm Biomed Anal 2021 Sep 24;204:114282. Epub 2021 Jul 24.

Department of Excellence of Biomedical Science and Public Health, University "Politecnica Delle Marche" of Ancona, Via Tronto 71, 60124, Ancona, Italy. Electronic address:

We developed and validated a new rapid and sensitive gas chromatography-tandem mass spectrometry method for the determination of cocaine and its metabolites benzoylecgonine, norcocaine, ecgonine methyl esther and cocaethylene in hair of consumers. Hair samples were firstly decontaminated with three subsequent dichloromethane washes, then incubated for one hour with M3® buffer to promote analytes solubilization and stabilization and finally solid phase extracted. All extracts were derivatized and injected into GC-MS/MS with electron impact ionization. Multiple Reaction Monitoring was used for the acquisition of characteristic analytes ion transitions reaching a high sensitivity 0.01 ng/mg COC and metabolites limit of quantification. The method was linear in the COC and metabolites calibration ranges (LLOQ-10 ng/mg and LLOQ-1 ng/mg, respectively). Intra-assay and inter-assay precision were always lower than 15 %, accuracy never exceeded ± 6.6 %. The main advantages of the presented method are the fast, simple and innovative pretreatment procedure together with the instrumental sensitivity that allowed to measure also less concentrated metabolites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2021.114282DOI Listing
September 2021

Acute Pharmacological Effects and Oral Fluid Biomarkers of the Synthetic Cannabinoid UR-144 and THC in Recreational Users.

Biology (Basel) 2021 Mar 24;10(4). Epub 2021 Mar 24.

Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain.

Synthetic cannabinoids (SCs) are one of the most frequent classes of new psychoactive substances monitored by the EU Early Warning System and World Health Organization. UR-144 is a SC with a relative low affinity for the CB1 receptor with respect to that for the CB2 receptor. As with other cannabinoid receptor agonists, it has been monitored by the EU Early Warning System since 2012 for severe adverse effects on consumers. Since data for UR-144 human pharmacology are very limited, an observational study was carried out to evaluate its acute pharmacological effects following its administration using a cannabis joint as term of comparison. Disposition of UR-144 and delta-9-tetrahydrocannibinol (THC) was investigated in oral fluid. Sixteen volunteers smoked a joint prepared with tobacco and 1 or 1.5 mg dose of UR-144 ( = 8) or cannabis flowering tops containing 10 or 20 mg THC ( = 8). Physiological variables including systolic and diastolic blood pressure, heart rate and cutaneous temperature were measured. A set of Visual Analog Scales (VAS), the Addiction Research Centre Inventory (ARCI)-49-item short form version and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) were administered to evaluate subjective effects. Oral fluid was collected at baseline, 10, 20, 40 min and 1, 2, 3 and 4 h after smoking, for UR-144 or THC concentration monitoring. Results showed significant statistical increases in both systolic and diastolic blood pressure and heart rate after both UR-144 and cannabis smoking. Both substances produced an increase in VAS related to stimulant-like and high effects, but scores were significantly higher after cannabis administration. No hallucinogenic effects were observed. Maximal oral fluid UR-144 and THC concentrations appeared at 20 and 10 min after smoking, respectively. The presence of UR-144 in oral fluid constitutes a non-invasive biomarker of SC consumption. The results of this observational study provide valuable preliminary data of the pharmacological effects of UR-144, showing a similar profile of cardiovascular effects in comparison with THC but lower intensity of subjective effects. Our results have to be confirmed by research in a larger sample to extensively clarify pharmacological effects and the health risk profile of UR-144.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology10040257DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064062PMC
March 2021

Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS.

Int J Mol Sci 2020 Dec 10;21(24). Epub 2020 Dec 10.

National Centre on Addiction and Doping, Istituto Superiore di Sanità, V.Le Regina Elena 299, 00161 Rome, Italy.

The consumption of synthetic cannabinoids (SCs) has significantly increased in the last decade and the analysis of SCs and their metabolites in human specimens is gaining interest in clinical and forensic toxicology. A pilot study has been carried out using a combination of an initial last generation gas chromatography-mass spectrometry (GC-MS) screening method for the determination of JWH-122, JWH-210, UR-144) in oral fluid (OF) of consumers and an ultra-high performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) confirmatory method for the quantification of the parent compounds and their metabolites in the same biological matrix. OF samples were simply liquid-liquid extracted before injecting in both chromatographic systems. The developed methods have been successfully validated and were linear from limit of quantification (LOQ) to 50 ng/mL OF. Recovery of analytes was always higher than 70% and matrix effect always lower than 15% whereas intra-assay and inter-assay precision and accuracy were always better than 16%. After smoking 1 mg JWH-122 or UR-144 and 3 mg JWH-210, maximum concentration of 4.00-3.14 ng/mL JWH-122, 8.10-7.30 ng/mL JWH-210 ng/mL and 7.40 and 6.81 ng/mL UR-144 were measured by GC-MS and UHPLC-HRMS respectively at 20 min after inhalation. Metabolites of JWH 122 and 210 were quantified in OF by UHPLC-HRMS, while that of UR144 was only detectable in traces. Our results provide for the first time information about disposition of these SCs and their metabolites in consumers OF. Last generation GC-MS has proven useful tool to identify and quantify parent SCs whereas UHPLC-HRMS also confirmed the presence of SCs metabolites in the OF of SCs consumers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21249414DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764284PMC
December 2020

A Review of Synthetic Cathinone-Related Fatalities From 2017 to 2020.

Ther Drug Monit 2021 02;43(1):52-68

Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania.

Background: Synthetic cathinones (SCs) are designer analogs of the natural active principle of khat. Since their appearance on the black market in 2003, their popularity has increased annually, and they have become the most seized class of new psychoactive substances reported to the UNODC Early Warning Advisory system. The constant introduction of newly synthesized molecules makes this issue difficult to monitor. The authors reviewed the most recent SC-related fatalities worldwide to highlight new trends of consumption, reporting acute pharmacological and toxicological symptoms, scene investigations, analytical methods, and reported SC concentrations in diverse biological matrices.

Methods: A literature search was performed using scientific databases such as PubMed, Scopus, Science Direct, Web of Science, and Research Gate to identify relevant scientific publications from 2017 to 2020. In addition, a search was conducted through the EU EWS.

Results: From 2017 to 2020, 31 different SCs were identified in 75 reported fatal intoxications in the literature, alone or in combination with other substances. The most abused SCs were N-ethylpentylone, N-ethylhexedrone, and 4-chloromethcathinone. The EU EWS included less detail on 72 additional SC-related fatalities from 2017 to 2020.

Conclusions: New SCs continuously replace older natural and synthetic stimulant drugs, making determining the cause of death difficult. Analytical methods and high-performance mass spectrometry instruments are essential to detect the low concentrations of these potent new SCs. Little data are available on the pharmacology of these new drugs; the evaluation of toxicological antemortem and postmortem findings provides critical data on the drug's pharmacology and toxicology and for the interpretation of new SC cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FTD.0000000000000808DOI Listing
February 2021

A Comprehensive HPLC-MS-MS Screening Method for 77 New Psychoactive Substances, 24 Classic Drugs and 18 Related Metabolites in Blood, Urine and Oral Fluid.

J Anal Toxicol 2020 Dec;44(8):769-783

Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, 60124, Ancona, Italy.

To date, more than 800 molecules are classified as New Psychoactive Substances (NPS), and it is reported that this number increases every year. Whereas several cases of polydrug consumption that led to acute intoxication and death are reported, a lack of effective analytical screening method to detect NPS and classical drug of abuse in human matrices affects the prompt identification of the probable cause of intoxication in emergency department of hospitals. In this concern, a fast, simple and comprehensive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) screening method to detect and quantify 77 NPS, 24 classic drugs and 18 related metabolites has been successfully developed and validated in blood, urine and oral fluid. A small volume (100 µL) of whole blood samples spiked with internal standard deuterated mixture was added to 70 µL of M3® buffer, and after precipitation of blood proteins, the supernatant was evaporated to dryness and reconstituted in 1 mL of mobile phase. Same volume (100 µL) of urine and oral fluid samples spiked with internal standard deuterated mix were only diluted with 500 µL of M3® reagent. One microliter of samples of each matrix was injected into HPLC-MS-MS equipment. The run time lasted 10 min with a gradient mobile phase. Mass spectrometric analysis was performed in positive ion multiple reaction monitoring mode. The method was linear for all analytes under investigation with a determination coefficient always better than 0.99. The calibration range for blood and oral fluid was from limits of quantification (LOQs) to 200 ng/mL, whereas that for urine was LOQs to 1000 ng/mL. Recovery and matrix effect were always higher than 80%, whereas intra-assay and inter-assay precision were always better than 19% and accuracy was always within 19% of target in every matrix. Applicability of the method was verified by analysis of samples from real cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jat/bkaa103DOI Listing
December 2020

Testing Unconventional Matrices to Monitor for Prenatal Exposure to Heroin, Cocaine, Amphetamines, Synthetic Cathinones, and Synthetic Opioids.

Ther Drug Monit 2020 04;42(2):205-221

Section of Legal Medicine, Università Politecnica delle Marche, Ancona, Italy.

Background: The prevalence of drug use during pregnancy continues to increase despite the associated serious adverse obstetrical outcomes, including increased risk of miscarriage, fetal growth restriction, brain development impairment, neonatal abstinence syndrome, preterm delivery, and stillbirths. Monitoring drug use during pregnancy is crucial to limit prenatal exposure and provide suitable obstetrical health care. The authors reviewed published literature reporting the concentrations of common drugs of abuse and new psychoactive substances (NPS), such as synthetic cathinones and synthetic opioids, NPS, and their metabolites using unconventional matrices to identify drug use during pregnancy and improve data interpretation.

Methods: A literature search was performed from 2010 to July 2019 using PubMed, Scopus, Web of Science scientific databases, and reports from international institutions to review recently published articles on heroin, cocaine, amphetamine, methamphetamine, synthetic cathinone, and synthetic opioid monitoring during pregnancy.

Results: Meconium has been tested for decades to document prenatal exposure to drugs, but data regarding drug concentrations in amniotic fluid, the placenta, the umbilical cord, and neonatal hair are still lacking. Data on prenatal exposure to NPS are limited.

Conclusions: Maternal hair testing is the most sensitive alternative matrix for identifying drug use during pregnancy, while drug concentrations in the meconium, placenta, and umbilical cord offer the identification of prenatal drug exposure at birth. Adverse developmental outcomes for the infant make it critical to promptly identify maternal drug use to limit fetal exposure or, if determined at birth, to provide resources to the exposed child and family. Alternative matrices offer choices for monitoring and challenge laboratories to deliver highly sensitive and specific analytical methods for detection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FTD.0000000000000719DOI Listing
April 2020

Biomedical analysis of New Psychoactive Substances (NPS) of natural origin.

J Pharm Biomed Anal 2020 Feb 30;179:112945. Epub 2019 Oct 30.

Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy. Electronic address:

New psychoactive substances (NPS) can be divided into two main groups: synthetic molecules and active principles of natural origin. With respect to this latter group, a wide range of alkaloids contained in plants, mainly from Asia and South America, can be included in the class of NPS of natural origin. The majority NPS of natural origin presents stimulant and/or hallucinogenic effects (e.g. Catha edulis and Ayahuasca, respectively) while few of them show sedative and relaxing properties (e.g. kratom). Few information is available in relation to the analytical identification of psychoactive principles contained in the plant material. Moreover, to our knowledge, scarce data are present in literature, about the characterization and quantification of the parent drug in biological matrices from intoxication and fatality cases. In addition, the metabolism of natural active principles has not been yet fully investigated for most of the psychoactive substances from plant material. Consequently, their identification is not frequently performed and produced metabolites are often unknown. To fill this gap, we reviewed the currently available analytical methodologies for the identification and quantification of NPS of natural origin in plant material and, whenever possible, in conventional and non-conventional biological matrices of intoxicated and dead subjects. The psychoactive principles contained in the following plants were investigated: Areca catechu, Argyreia nervosa, Ayahuasca, Catha edulis, Ipomoea violacea, Mandragora officinarum, Mitragyna speciosa, Pausinystalia yohimbe, Piper methisticum, Psilocybe, Rivea corymbosa, Salvia divinorum, Sceletium tortuosum, Lactuca virosa. From the results obtained, it can be evidenced that although several analytical methods for the simultaneous quantification of different molecules from the same plants have been developed and validated, a comprehensive method to detect active compounds from different natural specimens both in biological and non-biological matrices is still lacking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2019.112945DOI Listing
February 2020

Monitoring Prenatal Exposure to Buprenorphine and Methadone.

Ther Drug Monit 2020 04;42(2):181-193

Unit of Forensic Toxicology, Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Università la Sapienza, Rome, Italy.

Purpose: Buprenorphine and methadone are international gold standards for managing opioid use disorders. Although they are efficacious in treating opioid dependence, buprenorphine and methadone present risks, especially during pregnancy, causing neonatal abstinence syndrome and adverse obstetrical outcomes. Buprenorphine and methadone are also abused during pregnancy, and identifying their use is important to limit unprescribed prenatal exposure. Previous studies have suggested that concentrations of buprenorphine, but not methadone markers in unconventional matrices may predict child outcomes, although currently only limited data exist. We reviewed the literature on concentrations of buprenorphine, methadone, and their metabolites in unconventional matrices to improve data interpretation.

Methods: A literature search was conducted using scientific databases (PubMed, Scopus, Web of Science, and reports from international institutions) to review published articles on buprenorphine and methadone monitoring during pregnancy.

Results: Buprenorphine and methadone and their metabolites were quantified in the meconium, umbilical cord, placenta, and maternal and neonatal hair. Methadone concentrations in the meconium and hair were typically higher than those in other matrices, although the concentrations in the placenta and umbilical cord were more suitable for predicting neonatal outcomes. Buprenorphine concentrations were lower and required sensitive instrumentation, as measuring buprenorphine glucuronidated metabolites is critical to predict neonatal outcomes.

Conclusions: Unconventional matrices are good alternatives to conventional ones for monitoring drug exposure during pregnancy. However, data are currently scarce on buprenorphine and methadone during pregnancy to accurately interpret their concentrations. Clinical studies should be conducted with larger cohorts, considering confounding factors such as illicit drug co-exposure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FTD.0000000000000693DOI Listing
April 2020

Sensitive and reliable gas chromatography tandem mass spectrometry assay for ethyl glucuronide in neonatal meconium.

J Pharm Biomed Anal 2019 Oct 6;175:112743. Epub 2019 Jul 6.

Section of Legal Medicine, Dept. of Excellence-Biomedical Sciences and Public Health, Ancona, Italy. Electronic address:

Prenatal exposure to maternal ethanol leads to serious physical and mental irreversible disabilities. Ethyl glucuronide (EtG) is a direct metabolite of alcohol and its measurement in neonatal meconium has been established as the best biomarker to assess prenatal exposure to social and excessive gestational ethanol. We developed and validated the first gas chromatography tandem mass spectrometry method to quantify EtG extracted from meconium by a simple solid phase extraction pretreatment. The method was linear from limit of quantification (2 ng/g) to 200 ng/g matrix with good determination coefficient (r = 0.99). Recovery of EtG from meconium was always higher than 70% and intra-assay and inter-assay precision and accuracy were always better than 10%. Robustness of the developed GC-MS/MS method was tested by analysing 150 real samples coming from a previous national epidemiological project pre-screened through an ultra-chromatography tandem mass spectrometry assay obtaining a good comparability of results obtained by the two methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2019.06.040DOI Listing
October 2019
-->