Publications by authors named "Norman Qureshi"

51 Publications

Novel Low-Voltage MultiPulse Therapy to Terminate Atrial Fibrillation.

JACC Clin Electrophysiol 2021 Mar 25. Epub 2021 Mar 25.

George Washington University, Washington, DC, USA. Electronic address:

Objectives: This first-in-human feasibility study was undertaken to translate the novel low-voltage MultiPulse Therapy (MPT) (Cardialen, Inc., Minneapolis, Minnesota), which was previously been shown to be effective in preclinical studies in terminating atrial fibrillation (AF), into clinical use.

Background: Current treatment options for AF, the most common arrhythmia in clinical practice, have limited success. Previous attempts at treating AF by using implantable devices have been limited by the painful nature of high-voltage shocks.

Methods: Forty-two patients undergoing AF ablation were recruited at 6 investigational centers worldwide. Before ablation, electrode catheters were placed in the coronary sinus, right and/or left atrium, for recording and stimulation. After the induction of AF, MPT, which consists of up to a 3-stage sequence of far- and near-field stimulation pulses of varied amplitude, duration, and interpulse timing, was delivered via temporary intracardiac leads. MPT parameters and delivery methods were iteratively optimized.

Results: In the 14 patients from the efficacy phase, MPT terminated 37 of 52 (71%) of AF episodes, with the lowest median energy of 0.36 J (interquartile range: 0.14 to 1.21 J) and voltage of 42.5 V (interquartile range: 25 to 75 V). Overall, 38% of AF terminations occurred within 2 seconds of MPT delivery (p < 0.0001). Shorter time between AF induction and MPT predicted success of MPT in terminating AF (p < 0.001).

Conclusions: MPT effectively terminated AF at voltages and energies known to be well tolerated or painless in some patients. Our results support further studies of the concept of implanted devices for early AF conversion to reduce AF burden, symptoms, and progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2020.12.014DOI Listing
March 2021

Electroanatomic Characterization and Ablation of Scar-Related Isthmus Sites Supporting Perimitral Flutter.

JACC Clin Electrophysiol 2021 Jan 20. Epub 2021 Jan 20.

Imperial College Healthcare, London, United Kingdom. Electronic address:

Objectives: The authors reviewed 3-dimensional electroanatomic maps of perimitral flutter to identify scar-related isthmuses and determine their effectiveness as ablation sites.

Background: Perimitral flutter is usually treated by linear ablation between the left lower pulmonary vein and mitral annulus. Conduction block can be difficult to achieve, and recurrences are common.

Methods: Patients undergoing atrial tachycardia ablation using CARTO3 (Biosense Webster Inc., Irvine, California) were screened from 4 centers. Patients with confirmed perimitral flutter were reviewed for the presence of scar-related isthmuses by using CARTO3 with the ConfiDense and Ripple Mapping modules.

Results: Confirmed perimitral flutter was identified in 28 patients (age 65.2 ± 8.1 years), of whom 26 patients had prior atrial fibrillation ablation. Scar-related isthmus ablation was performed in 12 of 28 patients. Perimitral flutter was terminated in all following correct identification of a scar-related isthmus using ripple mapping. The mean scar voltage threshold was 0.11 ± 0.05 mV. The mean width of scar-related isthmuses was 8.9 ± 3.5 mm with a conduction speed of 31.8 ± 5.5 cm/s compared to that of normal left atrium of 71.2 ± 21.5 cm/s (p < 0.0001). Empirical, anatomic ablation was performed in 16 of 28, with termination in 10 of 16 (63%; p = 0.027). Significantly less ablation was required for critical isthmus ablation compared to empirical linear lesions (11.4 ± 5.3 vs. 26.2 ± 17.1 min; p = 0.0004). All 16 cases of anatomic ablation were reviewed with ripple mapping, and 63% had scar-related isthmus.

Conclusions: Perimitral flutter is usually easy to diagnose but can be difficult to ablate. Ripple mapping is highly effective at locating the critical isthmus maintaining the tachycardia and avoiding anatomic ablation lines. This approach has a higher termination rate with less radiofrequency ablation required.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2020.10.017DOI Listing
January 2021

Electrocardiographic predictors of successful resynchronization of left bundle branch block by His bundle pacing.

J Cardiovasc Electrophysiol 2021 Feb 4;32(2):428-438. Epub 2021 Jan 4.

National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.

Background: His bundle pacing (HBP) is an alternative to biventricular pacing (BVP) for delivering cardiac resynchronization therapy (CRT) in patients with heart failure and left bundle branch block (LBBB). It is not known whether ventricular activation times and patterns achieved by HBP are equivalent to intact conduction systems and not all patients with LBBB are resynchronized by HBP.

Objective: To compare activation times and patterns of His-CRT with BVP-CRT, LBBB and intact conduction systems.

Methods: In patients with LBBB, noninvasive epicardial mapping (ECG imaging) was performed during BVP and temporary HBP. Intrinsic activation was mapped in all subjects. Left ventricular activation times (LVAT) were measured and epicardial propagation mapping (EPM) was performed, to visualize epicardial wavefronts. Normal activation pattern and a normal LVAT range were determined from normal subjects.

Results: Forty-five patients were included, 24 with LBBB and LV impairment, and 21 with normal 12-lead ECG and LV function. In 87.5% of patients with LBBB, His-CRT successfully shortened LVAT by ≥10 ms. In 33.3%, His-CRT resulted in complete ventricular resynchronization, with activation times and patterns indistinguishable from normal subjects. EPM identified propagation discontinuity artifacts in 83% of patients with LBBB. This was the best predictor of whether successful resynchronization was achieved by HBP (logarithmic odds ratio, 2.19; 95% confidence interval, 0.07-4.31; p = .04).

Conclusion: Noninvasive electrocardiographic mapping appears to identify patients whose LBBB can be resynchronized by HBP. In contrast to BVP, His-CRT may deliver the maximum potential ventricular resynchronization, returning activation times, and patterns to those seen in normal hearts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.14845DOI Listing
February 2021

Left Atrial Enhancement Correlates With Myocardial Conduction Velocity in Patients With Persistent Atrial Fibrillation.

Front Physiol 2020 12;11:570203. Epub 2020 Nov 12.

ElectroCardioMaths Programme of The Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.

Background: Conduction velocity (CV) heterogeneity and myocardial fibrosis both promote re-entry, but the relationship between fibrosis as determined by left atrial (LA) late-gadolinium enhanced cardiac magnetic resonance imaging (LGE-CMRI) and CV remains uncertain.

Objective: Although average CV has been shown to correlate with regional LGE-CMRI in patients with persistent AF, we test the hypothesis that a localized relationship exists to underpin LGE-CMRI as a minimally invasive tool to map myocardial conduction properties for risk stratification and treatment guidance.

Method: 3D LA electroanatomic maps during LA pacing were acquired from eight patients with persistent AF following electrical cardioversion. Local CVs were computed using triads of concurrently acquired electrograms and were co-registered to allow correlation with LA wall intensities obtained from LGE-CMRI, quantified using normalized intensity (NI) and image intensity ratio (IIR). Association was evaluated using multilevel linear regression.

Results: An association between CV and LGE-CMRI intensity was observed at scales comparable to the size of a mapping electrode: -0.11 m/s per unit increase in NI ( < 0.001) and -0.96 m/s per unit increase in IIR ( < 0.001). The magnitude of this change decreased with larger measurement area. Reproducibility of the association was observed with NI, but not with IIR.

Conclusion: At clinically relevant spatial scales, comparable to area of a mapping catheter electrode, LGE-CMRI correlates with CV. Measurement scale is important in accurately quantifying the association of CV and LGE-CMRI intensity. Importantly, NI, but not IIR, accounts for changes in the dynamic range of CMRI and enables quantitative reproducibility of the association.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2020.570203DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693630PMC
November 2020

Non-invasive detection of exercise-induced cardiac conduction abnormalities in sudden cardiac death survivors in the inherited cardiac conditions.

Europace 2021 Feb;23(2):305-312

Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.

Aims : Rate adaptation of the action potential ensures spatial heterogeneities in conduction across the myocardium are minimized at different heart rates providing a protective mechanism against ventricular fibrillation (VF) and sudden cardiac death (SCD), which can be quantified by the ventricular conduction stability (V-CoS) test previously described. We tested the hypothesis that patients with a history of aborted SCD due to an underlying channelopathy or cardiomyopathy have a reduced capacity to maintain uniform activation following exercise.

Methods And Results : Sixty individuals, with (n = 28) and without (n = 32) previous aborted-SCD event underwent electro-cardiographic imaging recordings following exercise treadmill test. These included 25 Brugada syndrome, 13 hypertrophic cardiomyopathy, 12 idiopathic VF, and 10 healthy controls. Data were inputted into the V-CoS programme to calculate a V-CoS score that indicate the percentage of ventricle that showed no significant change in ventricular activation, with a lower score indicating the development of greater conduction heterogeneity. The SCD group, compared to those without, had a lower median (interquartile range) V-CoS score at peak exertion [92.8% (89.8-96.3%) vs. 97.3% (94.9-99.1%); P < 0.01] and 2 min into recovery [95.2% (91.1-97.2%) vs. 98.9% (96.9-99.5%); P < 0.01]. No significant difference was observable later into recovery at 5 or 10 min. Using the lowest median V-CoS scores obtained during the entire recovery period post-exertion, SCD survivors had a significantly lower score than those without for each of the different underlying aetiologies.

Conclusion : Data from this pilot study demonstrate the potential use of this technique in risk stratification for the inherited cardiac conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euaa248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868885PMC
February 2021

Within-patient comparison of His-bundle pacing, right ventricular pacing, and right ventricular pacing avoidance algorithms in patients with PR prolongation: Acute hemodynamic study.

J Cardiovasc Electrophysiol 2020 11 5;31(11):2964-2974. Epub 2020 Oct 5.

National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.

Aims: A prolonged PR interval may adversely affect ventricular filling and, therefore, cardiac function. AV delay can be corrected using right ventricular pacing (RVP), but this induces ventricular dyssynchrony, itself harmful. Therefore, in intermittent heart block, pacing avoidance algorithms are often implemented. We tested His-bundle pacing (HBP) as an alternative.

Methods: Outpatients with a long PR interval (>200 ms) and intermittent need for ventricular pacing were recruited. We measured within-patient differences in high-precision hemodynamics between AV-optimized RVP and HBP, as well as a pacing avoidance algorithm (Managed Ventricular Pacing [MVP]).

Results: We recruited 18 patients. Mean left ventricular ejection fraction was 44.3 ± 9%. Mean intrinsic PR interval was 266 ± 42 ms and QRS duration was 123 ± 29 ms. RVP lengthened QRS duration (+54 ms, 95% CI 42-67 ms, p < .0001) while HBP delivered a shorter QRS duration than RVP (-56 ms, 95% CI -67 to -46 ms, p < .0001). HBP did not increase QRS duration (-2 ms, 95% CI -8 to 13 ms, p = .6). HBP improved acute systolic blood pressure by mean of 5.0 mmHg (95% CI 2.8-7.1 mmHg, p < .0001) compared to RVP and by 3.5 mmHg (95% CI 1.9-5.0 mmHg, p = .0002) compared to the pacing avoidance algorithm. There was no significant difference in hemodynamics between RVP and ventricular pacing avoidance (p = .055).

Conclusions: HBP provides better acute cardiac function than pacing avoidance algorithms and RVP, in patients with prolonged PR intervals. HBP allows normalization of prolonged AV delays (unlike pacing avoidance) and does not cause ventricular dyssynchrony (unlike RVP). Clinical trials may be justified to assess whether these acute improvements translate into longer term clinical benefits in patients with bradycardia indications for pacing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.14763DOI Listing
November 2020

The ectopy-triggering ganglionated plexuses in atrial fibrillation.

Auton Neurosci 2020 11 21;228:102699. Epub 2020 Jul 21.

Myocardial Function Section, NHLI, Imperial College London, UK; Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK; Imperial Centre for Cardiac Engineering, Imperial College London, London, UK. Electronic address:

Background: Epicardial ganglionated plexuses (GP) have an important role in the pathogenesis of atrial fibrillation (AF). The relationship between anatomical, histological and functional effects of GP is not well known. We previously described atrioventricular (AV) dissociating GP (AVD-GP) locations. In this study, we hypothesised that ectopy triggering GP (ET-GP) are upstream triggers of atrial ectopy/AF and have different anatomical distribution to AVD-GP.

Objectives: We mapped and characterised ET-GP to understand their neural mechanism in AF and anatomical distribution in the left atrium (LA).

Methods: 26 patients with paroxysmal AF were recruited. All were paced in the LA with an ablation catheter. High frequency stimulation (HFS) was synchronised to each paced stimulus for delivery within the local atrial refractory period. HFS responses were tagged onto CARTO™ 3D LA geometry. All geometries were transformed onto one reference LA shell. A probability distribution atlas of ET-GP was created. This identified high/low ET-GP probability regions.

Results: 2302 sites were tested with HFS, identifying 579 (25%) ET-GP. 464 ET-GP were characterised, where 74 (16%) triggered ≥30s AF/AT. Median 97 (IQR 55) sites were tested, identifying 19 (20%) ET-GP per patient. >30% of ET-GP were in the roof, mid-anterior wall, around all PV ostia except in the right inferior PV (RIPV) in the posterior wall.

Conclusion: ET-GP can be identified by endocardial stimulation and their anatomical distribution, in contrast to AVD-GP, would be more likely to be affected by wide antral circumferential ablation. This may contribute to AF ablation outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autneu.2020.102699DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511599PMC
November 2020

Anatomical Distribution of Ectopy-Triggering Plexuses in Patients With Atrial Fibrillation.

Circ Arrhythm Electrophysiol 2020 09 27;13(9):e008715. Epub 2020 Jul 27.

Myocardial Function Section, Imperial Centre for Translational and Experimental Medicine (M.-Y.K., B.C.S., M.B.S., C.D.C., F.S.N., N.S.P., P.B.L., N.W.F.L., P.K.), Imperial College London, United Kingdom.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.120.008715DOI Listing
September 2020

Granger Causality-Based Analysis for Classification of Fibrillation Mechanisms and Localization of Rotational Drivers.

Circ Arrhythm Electrophysiol 2020 03 16;13(3):e008237. Epub 2020 Feb 16.

National Heart & Lung Institute, Imperial College London, United Kingdom (B.S.H., X.L., N.A.Q., I.M., R.A.C., Z.I.W., N.W.F.L., P.B.L., P.K., N.S.P., F.S.N.).

Background: The mechanisms sustaining myocardial fibrillation remain disputed, partly due to a lack of mapping tools that can accurately identify the mechanism with low spatial resolution clinical recordings. Granger causality (GC) analysis, an econometric tool for quantifying causal relationships between complex time-series, was developed as a novel fibrillation mapping tool and adapted to low spatial resolution sequentially acquired data.

Methods: Ventricular fibrillation (VF) optical mapping was performed in Langendorff-perfused Sprague-Dawley rat hearts (n=18), where novel algorithms were developed using GC-based analysis to (1) quantify causal dependence of neighboring signals and plot GC vectors, (2) quantify global organization with the causality pairing index, a measure of neighboring causal signal pairs, and (3) localize rotational drivers (RDs) by quantifying the circular interdependence of neighboring signals with the circular interdependence value. GC-based mapping tools were optimized for low spatial resolution from downsampled optical mapping data, validated against high-resolution phase analysis and further tested in previous VF optical mapping recordings of coronary perfused donor heart left ventricular wedge preparations (n=12), and adapted for sequentially acquired intracardiac electrograms during human persistent atrial fibrillation mapping (n=16).

Results: Global VF organization quantified by causality pairing index showed a negative correlation at progressively lower resolutions (50% resolution: =0.006, =0.38, 12.5% resolution, =0.004, =0.41) with a phase analysis derived measure of disorganization, locations occupied by phase singularities. In organized VF with high causality pairing index values, GC vector mapping characterized dominant propagating patterns and localized stable RDs, with the circular interdependence value showing a significant difference in driver versus nondriver regions (0.91±0.05 versus 0.35±0.06, =0.0002). These findings were further confirmed in human VF. In persistent atrial fibrillation, a positive correlation was found between the causality pairing index and presence of stable RDs (=0.0005,=0.56). Fifty percent of patients had RDs, with a low incidence of 0.9±0.3 RDs per patient.

Conclusions: GC-based fibrillation analysis can measure global fibrillation organization, characterize dominant propagating patterns, and map RDs using low spatial resolution sequentially acquired data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.119.008237DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069398PMC
March 2020

Ripple-AT Study: A Multicenter and Randomized Study Comparing 3D Mapping Techniques During Atrial Tachycardia Ablations.

Circ Arrhythm Electrophysiol 2019 08 9;12(8):e007394. Epub 2019 Aug 9.

Imperial College Healthcare, London (V.L., M.K.-W., G.K., P.B.L., N.S.P., N.Q., Z.W., N.W.F.L., P.K.).

Background: Ripple mapping (RM) is an alternative approach to activation mapping of atrial tachycardia (AT) that avoids electrogram annotation. We tested whether RM is superior to conventional annotation based local activation time (LAT) mapping for AT diagnosis in a randomized and multicenter study.

Methods: Patients with AT were randomized to either RM or LAT mapping using the CARTO3v4 CONFIDENSE system. Operators determined the diagnosis using the assigned 3D mapping arm alone, before being permitted a single confirmatory entrainment manuever if needed. A planned ablation lesion set was defined. The primary end point was AT termination with delivery of the planned ablation lesion set. The inability to terminate AT with this first lesion set, the use of more than one entrainment manuever, or the need to crossover to the other mapping arm was defined as failure to achieve the primary end point.

Results: One hundred five patients from 7 centers were recruited with 22 patients excluded due to premature AT termination, noninducibility or left atrial appendage thrombus. Eighty-three patients (pts; RM=42, LAT=41) completed mapping and ablation within the 2 groups of similar characteristics (RM versus LAT: prior ablation or cardiac surgery n=35 [83%] versus n=35 [85%], P=0.80). The primary end point occurred in 38/42 pts (90%) in the RM group and 29/41pts (71%) in the LAT group (P=0.045). This was achieved without any entrainment in 31/42 pts (74%) with RM and 18/41 pts (44%) with LAT (P=0.01). Of those patients who failed to achieve the primary end point, AT termination was achieved in 9/12 pts (75%) in the LAT group following crossover to RM with entrainment, but 0/4 pts (0%) in the RM group crossing over to LAT mapping with entrainment (P=0.04).

Conclusions: RM is superior to LAT mapping on the CARTO3v4 CONFIDENSE system in guiding ablation to terminate AT with the first lesion set and with reduced entrainment to assist diagnosis.

Clinical Trials Registration: https://www.clinicaltrials.gov. Unique identifier: NCT02451995.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.118.007394DOI Listing
August 2019

Quantification of Electromechanical Coupling to Prevent Inappropriate Implantable Cardioverter-Defibrillator Shocks.

JACC Clin Electrophysiol 2019 06 27;5(6):705-715. Epub 2019 Mar 27.

Department of Cardiology, Imperial College Hospitals National Health Service Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Objectives: This study sought to test specialized processing of laser Doppler signals for discriminating ventricular fibrillation (VF) from common causes of inappropriate therapies.

Background: Inappropriate implantable cardioverter-defibrillator (ICD) therapies remain a clinically important problem associated with morbidity and mortality. Tissue perfusion biomarkers, implemented to assist automated diagnosis of VF, sometimes mistake artifacts and random noise for perfusion, which could lead to shocks being inappropriately withheld.

Methods: The study tested a novel processing algorithm that combines electrogram data and laser Doppler perfusion monitoring as a method for assessing circulatory status. Fifty patients undergoing VF induction during ICD implantation were recruited. Noninvasive laser Doppler and continuous electrograms were recorded during both sinus rhythm and VF. Two additional scenarios that might have led to inappropriate shocks were simulated for each patient: ventricular lead fracture and T-wave oversensing. The laser Doppler was analyzed using 3 methods for reducing noise: 1) running mean; 2) oscillatory height; and 3) a novel quantification of electromechanical coupling which gates laser Doppler relative to electrograms. In addition, the algorithm was tested during exercise-induced sinus tachycardia.

Results: Only the electromechanical coupling algorithm found a clear perfusion cut off between sinus rhythm and VF (sensitivity and specificity of 100%). Sensitivity and specificity remained at 100% during simulated lead fracture and electrogram oversensing. (Area under the curve running mean: 0.91; oscillatory height: 0.86; electromechanical coupling: 1.00). Sinus tachycardia did not cause false positive results.

Conclusions: Quantifying the coupling between electrical and perfusion signals increases reliability of discrimination between VF and artifacts that ICDs may interpret as VF. Incorporating such methods into future ICDs may safely permit reductions of inappropriate shocks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2019.01.025DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597902PMC
June 2019

Evaluation of a new algorithm for tracking activation during atrial fibrillation using multipolar catheters in humans.

J Cardiovasc Electrophysiol 2019 09 2;30(9):1464-1474. Epub 2019 Jul 2.

Department of Bioengineering, Imperial College London, London, UK.

Background: Conventional mapping techniques during atrial fibrillation (AF) are difficult to apply because of cycle length irregularity. Mapping studies are usually restricted to short durations of AF in limited regions because of the laborious manual annotation of local activation time (LAT). The purpose of this study was to test an automated algorithm to map activation during AF, with comparable accuracy to manual annotation.

Methods: Left atrial (LA) mapping was performed using a 20-pole double loop catheter (AFocusII) in 30-second data segments from 16 patients. The new algorithm (RETRO-Mapping) was designed to detect wavefront propagation between electrodes, and display activating wavefronts on a two-dimensional representation of the catheter. Activation patterns were validated against their bipolar electrograms and with isochronal maps. The mapping protocol was approved by the research ethics committee (13/LO1169 and 14/LO1367).

Results: During AF, uniform wavefront activation direction (mean ± SD, degrees) from manually constructed isochronal maps was comparable to RETRO-Propagation Map (RETRO-PM) and RETRO-Automated Direction (RETRO-AD): 1 ± 6.9 for RETRO-PM; and 2 ± 6.6 for RETRO-AD. There was no significant difference in activation direction assigned to 1373 uniform wavefronts during AF when comparing RETRO-PM with RETRO-AD (Bland-Altman mean difference: -0.1 degrees; limits of agreement: -8.0 to 8.3; 95% CI -0.4 to 0.2; (r = 0.01) R2 = < 0.005; P = .77).

Conclusion: We have developed and validated a new technique to map activation during AF. This technique shows comparable accuracy to that of conventional isochronal mapping with careful manual adjustment of LAT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.14033DOI Listing
September 2019

Voltage during atrial fibrillation is superior to voltage during sinus rhythm in localizing areas of delayed enhancement on magnetic resonance imaging: An assessment of the posterior left atrium in patients with persistent atrial fibrillation.

Heart Rhythm 2019 09 3;16(9):1357-1367. Epub 2019 Jun 3.

Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom. Electronic address:

Background: Bipolar electrogram voltage during sinus rhythm (V) has been used as a surrogate for atrial fibrosis in guiding catheter ablation of persistent atrial fibrillation (AF), but the fixed rate and wavefront characteristics present during sinus rhythm may not accurately reflect underlying functional vulnerabilities responsible for AF maintenance.

Objective: The purpose of this study was determine whether, given adequate temporal sampling, the spatial distribution of mean AF voltage (V) better correlates with delayed-enhancement magnetic resonance imaging (MRI-DE)-detected atrial fibrosis than V.

Methods: AF was mapped (8 seconds) during index ablation for persistent AF (20 patients) using a 20-pole catheter (660 ± 28 points/map). After cardioversion, V was mapped (557 ± 326 points/map). Electroanatomic and MRI-DE maps were co-registered in 14 patients.

Results: The time course of V was assessed from 1-40 AF cycles (∼8 seconds) at 1113 locations. V stabilized with sampling >4 seconds (mean voltage error 0.05 mV). Paired point analysis of V from segments acquired 30 seconds apart (3667 sites; 15 patients) showed strong correlation (r = 0.95; P <.001). Delayed enhancement (DE) was assessed across the posterior left atrial (LA) wall, occupying 33% ± 13%. V distributions were (median [IQR]) 0.21 [0.14-0.35] mV in DE vs 0.52 [0.34-0.77] mV in non-DE regions. V distributions were 1.34 [0.65-2.48] mV in DE vs 2.37 [1.27-3.97] mV in non-DE. V threshold of 0.35 mV yielded sensitivity of 75% and specificity of 79% in detecting MRI-DE compared with 63% and 67%, respectively, for V (1.8-mV threshold) CONCLUSION: The correlation between low-voltage and posterior LA MRI-DE is significantly improved when acquired during AF vs sinus rhythm. With adequate sampling, mean AF voltage is a reproducible marker reflecting the functional response to the underlying persistent AF substrate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2019.05.032DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722483PMC
September 2019

Ventricular conduction stability test: a method to identify and quantify changes in whole heart activation patterns during physiological stress.

Europace 2019 Sep;21(9):1422-1431

National Heart & Lung Institute, Imperial College London, London, UK.

Aims: Abnormal rate adaptation of the action potential is proarrhythmic but is difficult to measure with current electro-anatomical mapping techniques. We developed a method to rapidly quantify spatial discordance in whole heart activation in response to rate cycle length changes. We test the hypothesis that patients with underlying channelopathies or history of aborted sudden cardiac death (SCD) have a reduced capacity to maintain uniform activation following exercise.

Methods And Results: Electrocardiographical imaging (ECGI) reconstructs >1200 electrograms (EGMs) over the ventricles from a single beat, providing epicardial whole heart activation maps. Thirty-one individuals [11 SCD survivors; 10 Brugada syndrome (BrS) without SCD; and 10 controls] with structurally normal hearts underwent ECGI vest recordings following exercise treadmill. For each patient, we calculated the relative change in EGM local activation times (LATs) between a baseline and post-exertion phase using custom written software. A ventricular conduction stability (V-CoS) score calculated to indicate the percentage of ventricle that showed no significant change in relative LAT (<10 ms). A lower score reflected greater conduction heterogeneity. Mean variability (standard deviation) of V-CoS score over 10 consecutive beats was small (0.9 ± 0.5%), with good inter-operator reproducibility of V-CoS scores. Sudden cardiac death survivors, compared to BrS and controls, had the lowest V-CoS scores post-exertion (P = 0.011) but were no different at baseline (P = 0.50).

Conclusion: We present a method to rapidly quantify changes in global activation which provides a measure of conduction heterogeneity and proof of concept by demonstrating SCD survivors have a reduced capacity to maintain uniform activation following exercise.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euz015DOI Listing
September 2019

Prevalence of spontaneous type I ECG pattern, syncope, and other risk markers in sudden cardiac arrest survivors with Brugada syndrome.

Pacing Clin Electrophysiol 2019 02 6;42(2):257-264. Epub 2019 Jan 6.

Imperial College Healthcare NHS Trust, London, UK.

Introduction: A spontaneous type I electrocardiogram (ECG) pattern and/or unheralded syncope are conventionally used as risk markers for primary prevention of sudden cardiac arrest/death (SCA/SCD) in Brugada syndrome (BrS). In this study, we determine the prevalence of conventional and newer markers of risk in those with and without previous aborted SCA events.

Methods: All patients with BrS were identified at our institute. History of symptoms was obtained from medical tests or from interviews. Other markers of risk were also obtained, such as presence of (1) spontaneous type I pattern, (2) fractionated QRS (fQRS), (3) early repolarization (ER) pattern, (4) late potentials on signal-averaged ECG (SAECG), and (5) response to programmed electrical stimulation.

Results: In 133 patients with Bars, 10 (7%) patients (mean age = 39 ± 11 years; nine males) were identified with a previous ventricular fibrillation/ventricular tachycardia episode (n = 8) or requiring cardio-pulmonary resuscitation (n = 2). None of these patients had a prior history of syncope before their SCA event. Only two (20%) patients reported a history of palpitations or dizziness. None had apneic breathing and three (30%) patients had a family history of SCA. From their ECGs, a spontaneous pattern was only found in one (10%) of these patients. Further, 10% of patients had fQRS, 17% had late potentials on SAECG, 20% had deep S waves in lead I, and 10% had an ER pattern in the peripheral leads. No significant differences were observed in the non-SCA group.

Conclusion: The majority of BrS patients with previous aborted SCA events did not have a spontaneous type I and/or prior history of syncope. Conventional and newer markers of risk appear to only have limited ability to predict SCA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/pace.13587DOI Listing
February 2019

His Resynchronization Versus Biventricular Pacing in Patients With Heart Failure and Left Bundle Branch Block.

J Am Coll Cardiol 2018 12;72(24):3112-3122

National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Background: His bundle pacing is a new method for delivering cardiac resynchronization therapy (CRT).

Objectives: The authors performed a head-to-head, high-precision, acute crossover comparison between His bundle pacing and conventional biventricular CRT, measuring effects on ventricular activation and acute hemodynamic function.

Methods: Patients with heart failure and left bundle branch block referred for conventional biventricular CRT were recruited. Using noninvasive epicardial electrocardiographic imaging, the authors identified patients in whom His bundle pacing shortened left ventricular activation time. In these patients, the authors compared the hemodynamic effects of His bundle pacing against biventricular pacing using a high-multiple repeated alternation protocol to minimize the effect of noise, as well as comparing effects on ventricular activation.

Results: In 18 of 23 patients, left ventricular activation time was significantly shortened by His bundle pacing. Seventeen patients had a complete electromechanical dataset. In them, His bundle pacing was more effective at delivering ventricular resynchronization than biventricular pacing: greater reduction in QRS duration (-18.6 ms; 95% confidence interval [CI]: -31.6 to -5.7 ms; p = 0.007), left ventricular activation time (-26 ms; 95% CI: -41 to -21 ms; p = 0.002), and left ventricular dyssynchrony index (-11.2 ms; 95% CI: -16.8 to -5.6 ms; p < 0.001). His bundle pacing also produced a greater acute hemodynamic response (4.6 mm Hg; 95% CI: 0.2 to 9.1 mm Hg; p = 0.04). The incremental activation time reduction with His bundle pacing over biventricular pacing correlated with the incremental hemodynamic improvement with His bundle pacing over biventricular pacing (R = 0.70; p = 0.04).

Conclusions: His resynchronization delivers better ventricular resynchronization, and greater improvement in hemodynamic parameters, than biventricular pacing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2018.09.073DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290113PMC
December 2018

Determinants of new wavefront locations in cholinergic atrial fibrillation.

Europace 2018 Nov;20(suppl_3):iii3-iii15

LIRYC Electrophysiology and Heart Modeling Institute, Bordeaux Fondation, Avenue du Haut-Lévèque, Pessac, France.

Aims: Atrial fibrillation (AF) wavefront dynamics are complex and difficult to interpret, contributing to uncertainty about the mechanisms that maintain AF. We aimed to investigate the interplay between rotors, wavelets, and focal sources during fibrillation.

Methods And Results: Arrhythmia wavefront dynamics were analysed for four optically mapped canine cholinergic AF preparations. A bilayer computer model was tuned to experimental preparations, and varied to have (i) fibrosis in both layers or the epicardium only, (ii) different spatial acetylcholine distributions, (iii) different intrinsic action potential duration between layers, and (iv) varied interlayer connectivity. Phase singularities (PSs) were identified and tracked over time to identify rotational drivers. New focal wavefronts were identified using phase contours. Phase singularity density and new wavefront locations were calculated during AF. There was a single dominant mechanism for sustaining AF in each of the preparations, either a rotational driver or repetitive new focal wavefronts. High-density PS sites existed preferentially around the pulmonary vein junctions. Three of the four preparations exhibited stable preferential sites of new wavefronts. Computational simulations predict that only a small number of connections are functionally important in sustaining AF, with new wavefront locations determined by the interplay between fibrosis distribution, acetylcholine concentration, and heterogeneity in repolarization within layers.

Conclusion: We were able to identify preferential sites of new wavefront initiation and rotational activity, in order to determine the mechanisms sustaining AF. Electrical measurements should be interpreted differently according to whether they are endocardial or epicardial recordings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euy235DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251188PMC
November 2018

Analytical approaches for myocardial fibrillation signals.

Comput Biol Med 2018 11 17;102:315-326. Epub 2018 Jul 17.

ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom. Electronic address:

Atrial and ventricular fibrillation are complex arrhythmias, and their underlying mechanisms remain widely debated and incompletely understood. This is partly because the electrical signals recorded during myocardial fibrillation are themselves complex and difficult to interpret with simple analytical tools. There are currently a number of analytical approaches to handle fibrillation data. Some of these techniques focus on mapping putative drivers of myocardial fibrillation, such as dominant frequency, organizational index, Shannon entropy and phase mapping. Other techniques focus on mapping the underlying myocardial substrate sustaining fibrillation, such as voltage mapping and complex fractionated electrogram mapping. In this review, we discuss these techniques, their application and their limitations, with reference to our experimental and clinical data. We also describe novel tools including a new algorithm to map microreentrant circuits sustaining fibrillation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2018.07.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215772PMC
November 2018

Isthmus sites identified by Ripple Mapping are usually anatomically stable: A novel method to guide atrial substrate ablation?

J Cardiovasc Electrophysiol 2018 03 1;29(3):404-411. Epub 2018 Feb 1.

Imperial College Healthcare, London, UK.

Background: Postablation reentrant ATs depend upon conducting isthmuses bordered by scar. Bipolar voltage maps highlight scar as sites of low voltage, but the voltage amplitude of an electrogram depends upon the myocardial activation sequence. Furthermore, a voltage threshold that defines atrial scar is unknown. We used Ripple Mapping (RM) to test whether these isthmuses were anatomically fixed between different activation vectors and atrial rates.

Methods: We studied post-AF ablation ATs where >1 rhythm was mapped. Multipolar catheters were used with CARTO Confidense for high-density mapping. RM visualized the pattern of activation, and the voltage threshold below which no activation was seen. Isthmuses were characterized at this threshold between maps for each patient.

Results: Ten patients were studied (Map 1 was AT1; Map 2: sinus 1/10, LA paced 2/10, AT2 with reverse CS activation 3/10; AT2 CL difference 50 ± 30 ms). Point density was similar between maps (Map 1: 2,589 ± 1,330; Map 2: 2,214 ± 1,384; P  =  0.31). RM activation threshold was 0.16 ± 0.08 mV. Thirty-one isthmuses were identified in Map 1 (median 3 per map; width 27 ± 15 mm; 7 anterior; 6 roof; 8 mitral; 9 septal; 1 posterior). Importantly, 7 of 31 (23%) isthmuses were unexpectedly identified within regions without prior ablation. AT1 was treated following ablation of 11/31 (35%) isthmuses. Of the remaining 20 isthmuses, 14 of 16 isthmuses (88%) were consistent between the two maps (four were inadequately mapped). Wavefront collision caused variation in low voltage distribution in 2 of 16 (12%).

Conclusions: The distribution of isthmuses and nonconducting tissue within the ablated left atrium, as defined by RM, appear concordant between rhythms. This could guide a substrate ablative approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.13425DOI Listing
March 2018

Comparison of the Prognostic Usefulness of the European Society of Cardiology and American Heart Association/American College of Cardiology Foundation Risk Stratification Systems for Patients With Hypertrophic Cardiomyopathy.

Am J Cardiol 2018 02 7;121(3):349-355. Epub 2017 Nov 7.

Imperial College Healthcare NHS Trust, London, United Kingdom. Electronic address:

Implantable cardiodefibrillators (ICDs) have proven benefit in preventing sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC), making risk stratification essential. Data on the predictive accuracy on the European Society of Cardiology (ESC) risk scoring system have been conflicting. We independently evaluated the ESC risk scoring system in our cohort of patients with HC from a large tertiary center and compared this with previous guidance by the American College of Cardiology Foundation and Heart Association (ACCF/AHA). Risk factor profiles, 5-year SCD risk estimates, and ICD recommendations, as defined by the ACCF/AHA and ESC guidelines, were retrospectively ascertained for 288 HC patients with and without SCD or equivalent events at our center. In the SCD group (n = 14), a significantly higher proportion of patients would not have met the criteria for an ICD implant using the ESC scoring algorithm compared with ACCF/AHA guidance (43% vs 7%, p = 0.029). In those without SCD events (n = 274), a larger proportion of individuals not requiring an ICD was identified using the ESC risk score model compared with the ACCF/AHA model (82% vs 57%; p < 0.0001). Based on risk stratification criteria alone, 5 more individuals with a previously aborted SCD event would not have received an ICD with the ESC risk model compared with the ACCF/AHA risk model. In conclusion, we found that the current ESC scoring system potentially leaves more high-risk patients unprotected from sudden death in our cohort of patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjcard.2017.10.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812921PMC
February 2018

The sawtooth EKG pattern of typical atrial flutter is not related to slow conduction velocity at the cavotricuspid isthmus.

J Cardiovasc Electrophysiol 2017 Dec 14;28(12):1445-1453. Epub 2017 Sep 14.

Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK.

Introduction: We hypothesized that very high-density mapping of typical atrial flutter (AFL) would facilitate a more complete understanding of its circuit. Such very high-density mapping was performed with the Rhythmia (Boston Scientific) mapping system using its 64 electrode basket catheter.

Methods And Results: Data were acquired from 13 patients in AFL. Functional anatomy of the right atrium (RA) was readily identified during mapping including the Crista Terminalis and Eustachian ridge. The leading edge of the activation wavefront was identified without interruption and its conduction velocity (CV) was calculated. CV was not different at the cavotricuspid isthmus (CTI) compared to the remainder of the RA (1.02 vs. 1.03 m/s, P = 0.93). The sawtooth pattern of the surface electrocardiogram (EKG) flutter waves was compared to the position of the dominant wavefront. The downslope of the surface EKG flutter waves represented on average 73% ± 9% of the total flutter cycle length. During the downslope, the activation wavefront traveled significantly further than during the upslope (182 ± 21 milliseconds vs. 68 ± 29 milliseconds, P < 0.0001) with no change in CV between the two phases (0.88 vs. 0.91 m/s, P = 0.79).

Conclusion: CV at the CTI is not slower than other RA regions during typical AFL. The gradual downslope of the sawtooth EKG  is not due to slow conduction at the CTI suggesting that success of ablation at this site relates to anatomical properties rather than the presence of a "slow isthmus."
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.13323DOI Listing
December 2017

Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation.

Circ Arrhythm Electrophysiol 2017 May;10(5):e004899

From the ElectroCardioMaths Programme (C.H.R., C.D.C., N.A.Q., P.B.L., P.K., N.S.P., F.S.N.), and the Department of Bioengineering (J.H.T.), Imperial College London, United Kingdom; IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France (J.D.B., E.J.V.); and Université de Bordeaux, IMB, UMR 5251, Talence, France (J.D.B., E.J.V.).

Background: Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF.

Methods And Results: Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present.

Conclusions: The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.116.004899DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434962PMC
May 2017

Visualizing Localized Reentry With Ultra-High Density Mapping in Iatrogenic Atrial Tachycardia: Beware Pseudo-Reentry.

Circ Arrhythm Electrophysiol 2017 Apr;10(4)

From the Department of Cardiology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom (V.L., M.S., K.L., N.Q., F.S.N., S.A.H., S.M.A.S., L.M.-L., E.L., I.W., M.K.-W., D.C.L., N.W.F.L., Z.W., P.K., D.W.D., N.S.P., P.B.L.); and Boston Scientific Ltd, Marlborough, MA (N.B., F.G.).

Background: The activation pattern of localized reentry (LR) in atrial tachycardia remains incompletely understood. We used the ultra-high density Rhythmia mapping system to study activation patterns in LR.

Methods And Results: LR was suggested by small rotatory activations (carousels) containing the full spectrum of the color-coded map. Twenty-three left-sided atrial tachycardias were mapped in 15 patients (age: 64±11 years). 16 253±9192 points were displayed per map, collected over 26±14 minutes. A total of 50 carousels were identified (median 2; quartiles 1-3 per map), although this represented LR in only n=7 out of 50 (14%): here, rotation occurred around a small area of scar (<0.03 mV; 12±6 mm diameter). In LR, electrograms along the carousel encompassed the full tachycardia cycle length, and surrounding activation moved away from the carousel in all directions. Ablating fractionated electrograms (117±18 ms; 44±13% of tachycardia cycle length) within the carousel interrupted the tachycardia in every LR case. All remaining carousels were pseudo-reentrant (n=43/50 [86%]) occurring in areas of wavefront collision (n=21; median 0.5; quartiles 0-2 per map) or as artifact because of annotation of noise or interpolation in areas of incomplete mapping (n=22; median 1, quartiles 0-2 per map). Pseudo-reentrant carousels were incorrectly ablated in 5 cases having been misinterpreted as LR.

Conclusions: The activation pattern of LR is of small stable rotational activations (carousels), and this drove 30% (7/23) of our postablation atrial tachycardias. However, this appearance is most often pseudo-reentrant and must be differentiated by interpretation of electrograms in the candidate circuit and activation in the wider surrounding region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.116.004724DOI Listing
April 2017

Adenosine induced ventricular fibrillation in a structurally normal heart: a case report.

J Med Case Rep 2017 Jan 22;11(1):21. Epub 2017 Jan 22.

Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, W12 0HS, UK.

Background: Adenosine is the first-line pharmacotherapy for termination of supraventricular tachycardia through its action on the atrioventricular node. However, pro-arrhythmic effects of adenosine are also recognised, most notably in the presence of pre-excited atrial fibrillation. In this case report, we describe the induction of ventricular fibrillation in a patient with no demonstrable accessory pathway, nor any other structural heart disease. This rare, idiosyncratic reaction has never previously been reported and is of relevance given the widespread and routine use of adenosine in clinical practice.

Case Presentation: A 26-year-old woman of Cypriot origin presented to our emergency department with a sudden onset of palpitations and chest discomfort. She was healthy, with no previous medical history and no regular medications. An electrocardiogram demonstrated a narrow complex tachycardia with a rate of 194 beats per minute. Following failure of vagal maneuvers to terminate the tachycardia, the assessing physician administered a single intravenous dose of 6 mg adenosine. Our patient instantaneously developed coarse ventricular fibrillation and circulatory collapse. Cardiopulmonary resuscitation was initiated and our patient was rapidly defibrillated to sinus rhythm with a single 150 J direct current shock. A 900-mg loading dose of intravenous amiodarone was commenced and our patient was managed in the cardiac high dependency unit. No further arrhythmias were identified on continuous cardiac monitoring. On review, her presenting electrocardiogram had demonstrated rapidly conducted atrial fibrillation with no evidence of ventricular pre-excitation. Concordantly, her resting electrocardiogram was not suggestive of any accessory pathway. This was conclusively excluded on invasive electrophysiology study, with negative programmed ventricular stimulation up to three extrastimuli. Extensive laboratory investigations were unremarkable and failed to identify an underlying cause for her episode of atrial fibrillation. Furthermore, cardiac magnetic resonance imaging demonstrated a structurally normal heart, with no edema, fibrosis or infarction as well as normal coronary artery anatomy.

Conclusions: Adenosine remains a safe and highly efficacious therapy for supraventricular tachycardia. However, this unusual case demonstrates the ability of adenosine to induce circulatory collapse and reminds the clinician that prompt access to resuscitation, defibrillation, and transcutaneous pacing equipment is mandatory with every administration of this drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13256-016-1177-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253202PMC
January 2017

Rotor Tracking Using Phase of Electrograms Recorded During Atrial Fibrillation.

Ann Biomed Eng 2017 04 5;45(4):910-923. Epub 2016 Dec 5.

National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.

Extracellular electrograms recorded during atrial fibrillation (AF) are challenging to interpret due to the inherent beat-to-beat variability in amplitude and duration. Phase mapping represents these voltage signals in terms of relative position within the cycle, and has been widely applied to action potential and unipolar electrogram data of myocardial fibrillation. To date, however, it has not been applied to bipolar recordings, which are commonly acquired clinically. The purpose of this study is to present a novel algorithm for calculating phase from both unipolar and bipolar electrograms recorded during AF. A sequence of signal filters and processing steps are used to calculate phase from simulated, experimental, and clinical, unipolar and bipolar electrograms. The algorithm is validated against action potential phase using simulated data (trajectory centre error <0.8 mm); between experimental multi-electrode array unipolar and bipolar phase; and for wavefront identification in clinical atrial tachycardia. For clinical AF, similar rotational content (R  = 0.79) and propagation maps (median correlation 0.73) were measured using either unipolar or bipolar recordings. The algorithm is robust, uses standard signal processing techniques, and accurately quantifies AF wavefronts and sources. Identifying critical sources, such as rotors, in AF, may allow for more accurate targeting of ablation therapy and improved patient outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-016-1766-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362653PMC
April 2017

A Prospective Study of Ripple Mapping the Post-Infarct Ventricular Scar to Guide Substrate Ablation for Ventricular Tachycardia.

Circ Arrhythm Electrophysiol 2016 06;9(6)

From the Imperial College Healthcare NHS Trust, London, United Kingdom.

Background: Post-infarct ventricular tachycardia is associated with channels of surviving myocardium within scar characterized by fractionated and low-amplitude signals usually occurring late during sinus rhythm. Conventional automated algorithms for 3-dimensional electro-anatomic mapping cannot differentiate the delayed local signal of conduction within the scar from the initial far-field signal generated by surrounding healthy tissue. Ripple mapping displays every deflection of an electrogram, thereby providing fully informative activation sequences. We prospectively used CARTO-based ripple maps to identify conducting channels as a target for ablation.

Methods And Results: High-density bipolar left ventricular endocardial electrograms were collected using CARTO3v4 in sinus rhythm or ventricular pacing and reviewed for ripple mapping conducting channel identification. Fifteen consecutive patients (median age 68 years, left ventricular ejection fraction 30%) were studied (6 month preprocedural implantable cardioverter defibrillator therapies: median 19 ATP events [Q1-Q3=4-93] and 1 shock [Q1-Q3=0-3]). Scar (<1.5 mV) occupied a median 29% of the total surface area (median 540 points collected within scar). A median of 2 ripple mapping conducting channels were seen within each scar (length 60 mm; initial component 0.44 mV; delayed component 0.20 mV; conduction 55 cm/s). Ablation was performed along all identified ripple mapping conducting channels (median 18 lesions) and any presumed interconnected late-activating sites (median 6 lesions; Q1-Q3=2-12). The diastolic isthmus in ventricular tachycardia was mapped in 3 patients and colocated within the ripple mapping conducting channels identified. Ventricular tachycardia was noninducible in 85% of patients post ablation, and 71% remain free of ventricular tachycardia recurrence at 6-month median follow-up.

Conclusions: Ripple mapping can be used to identify conduction channels within scar to guide functional substrate ablation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.116.004072DOI Listing
June 2016

A Collapsed Sportsman With a Shock Advised in Sinus Rhythm: The Importance of Automated External Defibrillator Rhythm Strip Retrieval Prior to Defibrillator Implantation.

Circ Arrhythm Electrophysiol 2016 Apr;9(4):e003914

From the Department of Cardiac Electrophysiology, Imperial College Healthcare NHS Trust (V.L., M.B.S., I.W., N.Q., D.C.L.) and London Ambulance Service (M.F.), London, United Kingdom.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.116.003914DOI Listing
April 2016

Dissociated pulmonary vein potentials: Expression of the cardiac autonomic nervous system following pulmonary vein isolation?

HeartRhythm Case Rep 2015 Nov 4;1(6):401-405. Epub 2015 Sep 4.

National Heart and Lung Institute, Imperial College London, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrcr.2015.02.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750876PMC
November 2015

A Prospective Study of Ripple Mapping in Atrial Tachycardias: A Novel Approach to Interpreting Activation in Low-Voltage Areas.

Circ Arrhythm Electrophysiol 2016 Jan;9(1):e003582

From the Department of Cardiac Electrophysiology, Imperial College Healthcare NHS Trust, London, United Kingdom.

Background: Post ablation atrial tachycardias are characterized by low-voltage signals that challenge current mapping methods. Ripple mapping (RM) displays every electrogram deflection as a bar moving from the cardiac surface, resulting in the impression of propagating wavefronts when a series of bars move consecutively. RM displays fractionated signals in their entirety thereby helping to identify propagating activation in low-voltage areas from nonconducting tissue. We prospectively used RM to study tachycardia activation in the previously ablated left atrium.

Methods And Results: Patients referred for atrial tachycardia ablation underwent dense electroanatomic point collection using CARTO3v4. RM was played over a bipolar voltage map and used to determine the voltage "activation threshold" that differentiated functional low voltage from nonconducting areas for each map. Ablation was guided by RM, but operators could perform entrainment or review the isochronal activation map for diagnostic uncertainty. Twenty patients were studied. Median RM determined activation threshold was 0.3 mV (0.19-0.33), with nonconducting tissue covering 33±9% of the mapped surface. All tachycardias crossed an isthmus (median, 0.52 mV, 13 mm) bordered by nonconducting tissue (70%) or had a breakout source (median, 0.35 mV) moving away from nonconducting tissue (30%). In reentrant circuits (14/20) the path length was measured (87-202 mm), with 9 of 14 also supporting a bystander circuit (path lengths, 147-234 mm). In breakout tachycardias, splitting of wavefronts resulted in 2 to 4 incomplete circuits. RM-guided ablation interrupted the tachycardia in 19 of 20 cases with the first ablation set.

Conclusions: RM helps to define activation through low-voltage regions and aids ablation of atrial tachycardias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.115.003582DOI Listing
January 2016