Publications by authors named "Nobuhiko Kayagaki"

37 Publications

Discovery of a caspase cleavage motif antibody reveals insights into noncanonical inflammasome function.

Proc Natl Acad Sci U S A 2021 Mar;118(12)

Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080;

Inflammasomes sense a number of pathogen and host damage signals to initiate a signaling cascade that triggers inflammatory cell death, termed pyroptosis. The inflammatory caspases (1/4/5/11) are the key effectors of this process through cleavage and activation of the pore-forming protein gasdermin D. Caspase-1 also activates proinflammatory interleukins, IL-1β and IL-18, via proteolysis. However, compared to the well-studied apoptotic caspases, the identity of substrates and therefore biological functions of the inflammatory caspases remain limited. Here, we construct, validate, and apply an antibody toolset for direct detection of neo-C termini generated by inflammatory caspase proteolysis. By combining rabbit immune phage display with a set of degenerate and defined target peptides, we discovered two monoclonal antibodies that bind peptides with a similar degenerate recognition motif as the inflammatory caspases without recognizing the canonical apoptotic caspase recognition motif. Crystal structure analyses revealed the molecular basis of this strong yet paradoxical degenerate mode of peptide recognition. One antibody selectively immunoprecipitated cleaved forms of known and unknown inflammatory caspase substrates, allowing the identification of over 300 putative substrates of the caspase-4 noncanonical inflammasome, including caspase-7. This dataset will provide a path toward developing blood-based biomarkers of inflammasome activation. Overall, our study establishes tools to discover and detect inflammatory caspase substrates and functions, provides a workflow for designing antibody reagents to study cell signaling, and extends the growing evidence of biological cross talk between the apoptotic and inflammatory caspases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2018024118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000503PMC
March 2021

NINJ1 mediates plasma membrane rupture during lytic cell death.

Nature 2021 Mar 20;591(7848):131-136. Epub 2021 Jan 20.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA, USA.

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1 macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1 macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1 mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03218-7DOI Listing
March 2021

Rescue from a fiery death: A therapeutic endeavor.

Science 2019 11;366(6466):688-689

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaw1177DOI Listing
November 2019

MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition.

PLoS Biol 2019 09 16;17(9):e3000354. Epub 2019 Sep 16.

Inflammation Research Center, VIB, Ghent, Belgium.

The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases. However, drug discovery efforts have been constrained by the lack of insight into the molecular target and mechanism by which these CRIDs inhibit the NLRP3 inflammasome pathway. Here, we show that the NAIP, CIITA, HET-E, and TP1 (NACHT) domain of NLRP3 is the molecular target of diarylsulfonylurea inhibitors. Interestingly, we find photoaffinity labeling (PAL) of the NACHT domain requires an intact (d)ATP-binding pocket and is substantially reduced for most CAPS-associated NLRP3 mutants. In concordance with this finding, MCC950/CRID3 failed to inhibit NLRP3-driven inflammatory pathology in two mouse models of CAPS. Moreover, it abolished circulating levels of interleukin (IL)-1β and IL-18 in lipopolysaccharide (LPS)-challenged wild-type mice but not in Nlrp3L351P knock-in mice and ex vivo-stimulated mutant macrophages. These results identify wild-type NLRP3 as the molecular target of MCC950/CRID3 and show that CAPS-related NLRP3 mutants escape efficient MCC950/CRID3 inhibition. Collectively, this work suggests that MCC950/CRID3-based therapies may effectively treat inflammation driven by wild-type NLRP3 but not CAPS-associated mutants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.3000354DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6762198PMC
September 2019

IRF2 transcriptionally induces expression for pyroptosis.

Sci Signal 2019 05 21;12(582). Epub 2019 May 21.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA 94080, USA.

Gasdermin-D (GSDMD) is cleaved by caspase-1, caspase-4, and caspase-11 in response to canonical and noncanonical inflammasome activation. Upon cleavage, GSDMD oligomerizes and forms plasma membrane pores, resulting in interleukin-1β (IL-1β) secretion, pyroptotic cell death, and inflammatory pathologies, including periodic fever syndromes and septic shock-a plague on modern medicine. Here, we showed that IRF2, a member of the interferon regulatory factor (IRF) family of transcription factors, was essential for the transcriptional activation of A forward genetic screen with -ethyl--nitrosourea (ENU)-mutagenized mice linked IRF2 to inflammasome signaling. expression was substantially attenuated in deficient macrophages, endothelial cells, and multiple tissues, which corresponded with reduced IL-1β secretion and inhibited pyroptosis. Mechanistically, IRF2 bound to a previously uncharacterized but unique site within the promoter to directly drive transcription for the execution of pyroptosis. Disruption of this single IRF2-binding site abolished signaling by both the canonical and noncanonical inflammasomes. Together, our data illuminate a key transcriptional mechanism for expression of the gene encoding GSDMD, a critical mediator of inflammatory pathologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aax4917DOI Listing
May 2019

Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death.

Science 2018 11 25;362(6418):1064-1069. Epub 2018 Oct 25.

Program in Innate Immunity, Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

Limited proteolysis of gasdermin D (GSDMD) generates an N-terminal pore-forming fragment that controls pyroptosis in macrophages. GSDMD is processed via inflammasome-activated caspase-1 or -11. It is currently unknown whether macrophage GSDMD can be processed by other mechanisms. Here, we describe an additional pathway controlling GSDMD processing. The inhibition of TAK1 or IκB kinase (IKK) by the effector protein YopJ elicits RIPK1- and caspase-8-dependent cleavage of GSDMD, which subsequently results in cell death. GSDMD processing also contributes to the NLRP3 inflammasome-dependent release of interleukin-1β (IL-1β). Thus, caspase-8 acts as a regulator of GSDMD-driven cell death. Furthermore, this study establishes the importance of TAK1 and IKK activity in the control of GSDMD cleavage and cytotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aau2818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522129PMC
November 2018

Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation.

J Exp Med 2018 09 22;215(9):2279-2288. Epub 2018 Aug 22.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA

Intracellular LPS sensing by caspase-4/5/11 triggers proteolytic activation of pore-forming gasdermin D (GSDMD), leading to pyroptotic cell death in Gram-negative bacteria-infected cells. Involvement of caspase-4/5/11 and GSDMD in inflammatory responses, such as lethal sepsis, makes them highly desirable drug targets. Using knock-in (KI) mouse strains, we herein provide genetic evidence to show that caspase-11 auto-cleavage at the inter-subunit linker is essential for optimal catalytic activity and subsequent proteolytic cleavage of GSDMD. Macrophages from caspase-11-processing dead KI mice ( ) exhibit defective caspase-11 auto-processing and phenocopy and caspase-11 enzymatically dead KI ( ) macrophages in attenuating responses to cytoplasmic LPS or Gram-negative bacteria infection. KI macrophages also fail to cleave GSDMD and are hypo-responsive to inflammasome stimuli, confirming that the GSDMD Asp residue is a nonredundant and indispensable site for proteolytic activation of GSDMD. Our data highlight the role of caspase-11 self-cleavage as a critical regulatory step for GSDMD processing and response against Gram-negative bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20180589DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122968PMC
September 2018

ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages.

Sci Rep 2018 02 28;8(1):3788. Epub 2018 Feb 28.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, USA.

The NLRC4 inflammasome recognizes bacterial flagellin and components of the type III secretion apparatus. NLRC4 stimulation leads to caspase-1 activation followed by a rapid lytic cell death known as pyroptosis. NLRC4 is linked to pathogen-free auto-inflammatory diseases, suggesting a role for NLRC4 in sterile inflammation. Here, we show that NLRC4 activates an alternative cell death program morphologically similar to apoptosis in caspase-1-deficient BMDMs. By performing an unbiased genome-wide CRISPR/Cas9 screen with subsequent validation studies in gene-targeted mice, we highlight a critical role for caspase-8 and ASC adaptor in an alternative apoptotic pathway downstream of NLRC4. Furthermore, caspase-1 catalytically dead knock-in (Casp1 C284A KI) BMDMs genetically segregate pyroptosis and apoptosis, and confirm that caspase-1 does not functionally compete with ASC for NLRC4 interactions. We show that NLRC4/caspase-8-mediated apoptotic cells eventually undergo plasma cell membrane damage in vitro, suggesting that this pathway can lead to secondary necrosis. Unexpectedly, we found that DFNA5/GSDME, a member of the pore-forming gasdermin family, is dispensable for the secondary necrosis that follows NLRC4-mediated apoptosis in macrophages. Together, our data confirm the existence of an alternative caspase-8 activation pathway diverging from the NLRC4 inflammasome in primary macrophages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-21998-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830643PMC
February 2018

Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K).

J Med Chem 2017 01 12;60(2):627-640. Epub 2017 Jan 12.

Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States.

We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b01363DOI Listing
January 2017

The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation.

PLoS Pathog 2016 Dec 2;12(12):e1006035. Epub 2016 Dec 2.

UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America.

Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production of pro-inflammatory cytokines IL-1β and IL-18, which are typically processed into their mature forms by active caspase-1 following inflammasome formation. Some effectors, like Y. pestis YopM, may block inflammasome activation. Here we show that YopM prevents Y. pestis induced activation of the Pyrin inflammasome induced by the RhoA-inhibiting effector YopE, which is a GTPase activating protein. YopM blocks YopE-induced Pyrin-mediated caspase-1 dependent IL-1β/IL-18 production and cell death. We also detected YopM in a complex with Pyrin and kinases RSK1 and PKN1, putative negative regulators of Pyrin. In contrast to wild-type mice, Pyrin deficient mice were also highly susceptible to an attenuated Y. pestis strain lacking YopM, emphasizing the importance of inhibition of Pyrin in vivo. A complex interplay between the Y. pestis T3SS and IL-1β/IL-18 production is evident, involving at least four inflammasome pathways. The secreted effector YopJ triggers caspase-8- dependent IL-1β activation, even when YopM is present. Additionally, the presence of the T3SS needle/translocon activates NLRP3 and NLRC4-dependent IL-1β generation, which is blocked by YopK, but not by YopM. Taken together, the data suggest YopM specificity for obstructing the Pyrin pathway, as the effector does not appear to block Y. pestis-induced NLRP3, NLRC4 or caspase-8 dependent caspase-1 processing. Thus, we identify Y. pestis YopM as a microbial inhibitor of the Pyrin inflammasome. The fact that so many of the Y. pestis T3SS components are participating in regulation of IL-1β/IL-18 release suggests that these effects are essential for maximal control of innate immunity during plague.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1006035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135138PMC
December 2016

GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes.

Proc Natl Acad Sci U S A 2016 07 23;113(28):7858-63. Epub 2016 Jun 23.

Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080;

Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca(2+) from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1607769113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948338PMC
July 2016

Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.

Nature 2015 Oct 16;526(7575):666-71. Epub 2015 Sep 16.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA.

Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature15541DOI Listing
October 2015

Caspase-11: arming the guards against bacterial infection.

Immunol Rev 2015 May;265(1):75-84

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA, USA.

As a front line of defense against pathogenic microbes, our body employs a primitive, yet highly sophisticated and potent innate immune response pathway collectively referred to as the inflammasome. Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury and mounting a coordinated molecular defense. For example, Gram-negative bacteria are specifically detected via a surveillance mechanism that involves activation of extracellular receptors such as Toll-like receptors (TLRs) followed by intracellular recognition and activation of pathways such as caspase-11 (caspase-4/5 in humans). Importantly, lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a strong trigger of these pathways. Extracellular LPS primarily stimulates TLR4, which can serve as a priming signal for expression of inflammasome components. Intracellular LPS can then trigger caspase-11-dependent inflammasome activation in the cytoplasm. Here, we briefly review the burgeoning caspase-11-dependent non-canonical inflammasome field, focusing mainly on the innate sensing of LPS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/imr.12292DOI Listing
May 2015

Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection.

Immunity 2015 Feb 10;42(2):321-331. Epub 2015 Feb 10.

Immunology Department, Genentech, Inc., South San Francisco, CA 94080, USA. Electronic address:

T helper 1 (Th1) cell-associated immunity exacerbates ileitis induced by oral Toxoplasma gondii infection. We show here that attenuated ileitis observed in interleukin-22 (IL-22)-deficient mice was associated with reduced production of Th1-cell-promoting IL-18. IL-22 not only augmented the expression of Il18 mRNA and inactive precursor protein (proIL-18) in intestinal epithelial cells after T. gondii or Citrobacter rodentium infection, but also maintained the homeostatic amount of proIL-18 in the ileum. IL-22, however, did not induce the processing to active IL-18, suggesting a two-step regulation of IL-18 in these cells. Although IL-18 exerted pathogenic functions during ileitis triggered by T. gondii, it was required for host defense against C. rodentium. Conversely, IL-18 was required for the expression of IL-22 in innate lymphoid cells (ILCs) upon T. gondii infection. Our results define IL-18 as an IL-22 target gene in epithelial cells and describe a complex mutual regulation of both cytokines during intestinal infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2015.01.011DOI Listing
February 2015

Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells.

Nature 2015 Feb 3;518(7539):417-21. Epub 2014 Dec 3.

Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.

T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORγt, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORγt in response to TGF-β signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13979DOI Listing
February 2015

Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases.

Nature 2014 May 16;509(7500):366-70. Epub 2014 Apr 16.

Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.

Lipopolysaccharide from Gram-negative bacteria is sensed in the host cell cytoplasm by a non-canonical inflammasome pathway that ultimately results in caspase-11 activation and cell death. In mouse macrophages, activation of this pathway requires the production of type-I interferons, indicating that interferon-induced genes have a critical role in initiating this pathway. Here we report that a cluster of small interferon-inducible GTPases, the so-called guanylate-binding proteins, is required for the full activity of the non-canonical caspase-11 inflammasome during infections with vacuolar Gram-negative bacteria. We show that guanylate-binding proteins are recruited to intracellular bacterial pathogens and are necessary to induce the lysis of the pathogen-containing vacuole. Lysis of the vacuole releases bacteria into the cytosol, thus allowing the detection of their lipopolysaccharide by a yet unknown lipopolysaccharide sensor. Moreover, recognition of the lysed vacuole by the danger sensor galectin-8 initiates the uptake of bacteria into autophagosomes, which results in a reduction of caspase-11 activation. These results indicate that host-mediated lysis of pathogen-containing vacuoles is an essential immune function and is necessary for efficient recognition of pathogens by inflammasome complexes in the cytosol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13157DOI Listing
May 2014

Noncanonical inflammasome activation by intracellular LPS independent of TLR4.

Science 2013 Sep 25;341(6151):1246-9. Epub 2013 Jul 25.

Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.

Gram-negative bacteria including Escherichia coli, Citrobacter rodentium, Salmonella typhimurium, and Shigella flexneri are sensed in an ill-defined manner by an intracellular inflammasome complex that activates caspase-11. We show that macrophages loaded with synthetic lipid A, E. coli lipopolysaccharide (LPS), or S. typhimurium LPS activate caspase-11 independently of the LPS receptor Toll-like receptor 4 (TLR4). Consistent with lipid A triggering the noncanonical inflammasome, LPS containing a divergent lipid A structure antagonized caspase-11 activation in response to E. coli LPS or Gram-negative bacteria. Moreover, LPS-mutant E. coli failed to activate caspase-11. Tlr4(-/-) mice primed with TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)] to induce pro-caspase-11 expression were as susceptible as wild-type mice were to sepsis induced by E. coli LPS. These data unveil a TLR4-independent mechanism for innate immune recognition of LPS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1240248DOI Listing
September 2013

Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1.

Nature 2012 Oct 15;490(7419):288-91. Epub 2012 Aug 15.

Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, California 94305, USA.

Inflammasomes are cytosolic multiprotein complexes assembled by intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and they initiate innate immune responses to invading pathogens and danger signals by activating caspase-1 (ref. 1). Caspase-1 activation leads to the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, as well as lytic inflammatory cell death known as pyroptosis. Recently, a new non-canonical inflammasome was described that activates caspase-11, a pro-inflammatory caspase required for lipopolysaccharide-induced lethality. This study also highlighted that previously generated caspase-1 knockout mice lack a functional allele of Casp11 (also known as Casp4), making them functionally Casp1 Casp11 double knockouts. Previous studies have shown that these mice are more susceptible to infections with microbial pathogens, including the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium), but the individual contributions of caspase-1 and caspase-11 to this phenotype are not known. Here we show that non-canonical caspase-11 activation contributes to macrophage death during S. typhimurium infection. Toll-like receptor 4 (TLR4)-dependent and TIR-domain-containing adaptor-inducing interferon-β (TRIF)-dependent interferon-β production is crucial for caspase-11 activation in macrophages, but is only partially required for pro-caspase-11 expression, consistent with the existence of an interferon-inducible activator of caspase-11. Furthermore, Casp1(-/-) mice were significantly more susceptible to infection with S. typhimurium than mice lacking both pro-inflammatory caspases (Casp1(-/-) Casp11(-/-)). This phenotype was accompanied by higher bacterial counts, the formation of extracellular bacterial microcolonies in the infected tissue and a defect in neutrophil-mediated clearance. These results indicate that caspase-11-dependent cell death is detrimental to the host in the absence of caspase-1-mediated innate immunity, resulting in extracellular replication of a facultative intracellular bacterial pathogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11419DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470772PMC
October 2012

Phosphorylation of NLRC4 is critical for inflammasome activation.

Nature 2012 Oct 12;490(7421):539-42. Epub 2012 Aug 12.

Department of Physiological Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.

NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis. Here we use knock-in mice expressing NLRC4 with a carboxy-terminal 3×Flag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser 533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlrc4(-/-) macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCδ) as a candidate NLRC4 kinase. Recombinant PKCδ phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCδ from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd(-/-) macrophages exhibited greatly attenuated caspase-1 activation and IL-1β secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11429DOI Listing
October 2012

Phosphorylation-dependent activity of the deubiquitinase DUBA.

Nat Struct Mol Biol 2012 Jan 15;19(2):171-5. Epub 2012 Jan 15.

Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA.

Addition and removal of ubiquitin or ubiquitin chains to and from proteins is a tightly regulated process that contributes to cellular signaling and protein stability. Here we show that phosphorylation of the human deubiquitinase DUBA (OTUD5) at a single residue, Ser177, is both necessary and sufficient to activate the enzyme. The crystal structure of the ubiquitin aldehyde adduct of active DUBA reveals a marked cooperation between phosphorylation and substrate binding. An intricate web of interactions involving the phosphate and the C-terminal tail of ubiquitin cause DUBA to fold around its substrate, revealing why phosphorylation is essential for deubiquitinase activity. Phosphoactivation of DUBA represents an unprecedented mode of protease regulation and a clear link between two major cellular signal transduction systems: phosphorylation and ubiquitin modification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.2206DOI Listing
January 2012

Non-canonical inflammasome activation targets caspase-11.

Nature 2011 Oct 16;479(7371):117-21. Epub 2011 Oct 16.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA.

Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature10558DOI Listing
October 2011

Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis.

Proc Natl Acad Sci U S A 2010 May 10;107(21):9771-6. Epub 2010 May 10.

Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.

Macrophages respond to cytosolic nucleic acids by activating cysteine protease caspase-1 within a complex called the inflammasome. Subsequent cleavage and secretion of proinflammatory cytokines IL-1beta and IL-18 are critical for innate immunity. Here, we show that macrophages from mice lacking absent in melanoma 2 (AIM2) cannot sense cytosolic double-stranded DNA and fail to trigger inflammasome assembly. Caspase-1 activation in response to intracellular pathogen Francisella tularensis also required AIM2. Immunofluorescence microscopy of macrophages infected with F. tularensis revealed striking colocalization of bacterial DNA with endogenous AIM2 and inflammasome adaptor ASC. By contrast, type I IFN (IFN-alpha and -beta) secretion in response to F. tularensis did not require AIM2. IFN-I did, however, boost AIM2-dependent caspase-1 activation by increasing AIM2 protein levels. Thus, inflammasome activation was reduced in infected macrophages lacking either the IFN-I receptor or stimulator of interferon genes (STING). Finally, AIM2-deficient mice displayed increased susceptibility to F. tularensis infection compared with wild-type mice. Their increased bacterial burden in vivo confirmed that AIM2 is essential for an effective innate immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1003738107DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906881PMC
May 2010

IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis.

Cell 2007 Nov;131(4):669-81

Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA.

Inhibitor of apoptosis (IAP) proteins are antiapoptotic regulators that block cell death in response to diverse stimuli. They are expressed at elevated levels in human malignancies and are attractive targets for the development of novel cancer therapeutics. Herein, we demonstrate that small-molecule IAP antagonists bind to select baculovirus IAP repeat (BIR) domains resulting in dramatic induction of auto-ubiquitination activity and rapid proteasomal degradation of c-IAPs. The IAP antagonists also induce cell death that is dependent on TNF signaling and de novo protein biosynthesis. Additionally, the c-IAP proteins were found to function as regulators of NF-kappaB signaling. Through their ubiquitin E3 ligase activities c-IAP1 and c-IAP2 promote proteasomal degradation of NIK, the central ser/thr kinase in the noncanonical NF-kappaB pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2007.10.030DOI Listing
November 2007

DUBA: a deubiquitinase that regulates type I interferon production.

Science 2007 Dec 8;318(5856):1628-32. Epub 2007 Nov 8.

Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.

Production of type I interferon (IFN-I) is a critical host defense triggered by pattern-recognition receptors (PRRs) of the innate immune system. Deubiquitinating enzyme A (DUBA), an ovarian tumor domain-containing deubiquitinating enzyme, was discovered in a small interfering RNA-based screen as a regulator of IFN-I production. Reduction of DUBA augmented the PRR-induced IFN-I response, whereas ectopic expression of DUBA had the converse effect. DUBA bound tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein essential for the IFN-I response. TRAF3 is an E3 ubiquitin ligase that preferentially assembled lysine-63-linked polyubiquitin chains. DUBA selectively cleaved the lysine-63-linked polyubiquitin chains on TRAF3, resulting in its dissociation from the downstream signaling complex containing TANK-binding kinase 1. A discrete ubiquitin interaction motif within DUBA was required for efficient deubiquitination of TRAF3 and optimal suppression of IFN-I. Our data identify DUBA as a negative regulator of innate immune responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1145918DOI Listing
December 2007

Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation.

J Exp Med 2005 Nov;202(10):1327-32

Molecular Oncology Department, Genentech, Inc., San Francisco, CA 94080, USA.

The bacterial pathogens of the genus Yersinia, the causative agents of plague, septicemia, and gastrointestinal syndromes, use a type III secretion system to inject virulence factors into host target cells. One virulence factor, YopJ, is essential for the death of infected macrophages and can block host proinflammatory responses by inhibiting both the nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinase pathways, which might be important for evasion of the host immune response and aid in establishing a systemic infection. Here, we show that YopJ is a promiscuous deubiquitinating enzyme that negatively regulates signaling by removing ubiquitin moieties from critical proteins, such as TRAF2, TRAF6, and IkappaBalpha. In contrast to the cylindromatosis tumor suppressor CYLD, which attenuates NF-kappaB signaling by selectively removing K63-linked polyubiquitin chains that activate IkappaB kinase, YopJ also cleaves K48-linked chains and thereby inhibits proteasomal degradation of IkappaBalpha. YopJ, but not a catalytically inactive YopJ mutant, promoted deubiquitination of cellular proteins and cleaved both K48- and K63-linked polyubiquitin. Moreover, an in vitro assay was established to demonstrate directly the deubiquitinating activity of purified YopJ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20051194DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212976PMC
November 2005

TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice.

Immunol Cell Biol 2005 Oct;83(5):511-9

Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, Victoria, Australia.

Studies have suggested that endogenous TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L may suppress the induction of some autoimmune diseases in mice. Here, we show that TRAIL/Apo2L suppresses autoimmune damage in relapsing-remitting, and non-remitting models of experimental autoimmune encephalomyelitis (EAE). TRAIL/Apo2L-deficient mice and wild-type mice treated with neutralizing anti-TRAIL/Apo2L antibody displayed enhanced clinical score, increased T-cell proliferative responses to myelin oligodendrocyte glycoprotein (MOG), and increased numbers of inflammatory lesions in the spinal cord and central nervous system. TRAIL neutralization immediately before disease onset was most effective at exacerbating disease score. More importantly, therapeutic intervention with recombinant soluble TRAIL/Apo2L delayed the onset and reduced the severity of MOG-induced EAE. These data are the first to illustrate the potential therapeutic value of recombinant TRAIL/Apo2L in suppressing T-cell-mediated autoimmune diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1711.2005.01358.xDOI Listing
October 2005

Sensitization of human glioblastomas to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by NF-kappaB inhibitors.

Cancer Sci 2004 Oct;95(10):840-4

Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.

Glioblastoma is the most malignant form of primary brain tumor in adults, with no effective therapy and a low survival rate. TRAIL is a member of the TNF family, which selectively induces apoptosis in certain neoplastic cells, but not normal cells. In this study, we investigated the sensitivity of 7 human glioblastoma cell lines to TRAIL and the expression in them of TRAIL receptors. TRAIL exhibited significant cytotoxicity in 5 of 7 glioma cell lines. These glioblastoma cell lines expressed TRAIL-R2, but not TRAIL-R1, R3, or R4. However, no correlation was observed between the TRAIL sensitivity and the TRAIL-R2 expression level, suggesting that there is an additional determinant of TRAIL sensitivity. Treatments with NF-kappaB inhibitors, such as LLnL, MG132, and SN50, significantly increased the sensitivity of glioma cells to TRAIL. These results suggested that activation of NF-kappaB is a protective mechanism against TRAIL-induced cell death in some glioma cells, and thus NF-kappaB inhibitors may be useful to improve the clinical treatment of glioblastoma with TRAIL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1349-7006.2004.tb02191.xDOI Listing
October 2004

Molecular cloning, functional characterization, and enzyme-linked immunosorbent assay of cynomolgus monkey Fas ligand.

J Immunol Methods 2003 Jul;278(1-2):201-9

Research and Development Laboratories, Nippon Organon K.K., 1-5-90 Tomobuchi-cho, Miyakojima, Osaka 534-0016, Japan.

Fas ligand (FasL) cDNAs were cloned and sequenced from cynomolgus, rhesus, and pig-tailed monkeys. The 840-bp cDNAs were identical among these three species of monkeys except for one nucleotide. The deduced 280 amino acids were completely identical and displayed 97% homology with human FasL (hFasL). Recombinant soluble FasL obtained from COS cells transfected with cynomolgus monkey FasL (cm-FasL) cDNA induced apoptosis in cells displaying human or cynomolgus monkey Fas-expressing cells. Several anti-human FasL monoclonal antibodies (mAbs) were able to neutralize the cytotoxic activity of monkey FasL, and a combination of mAbs was selected to obtain the most sensitive detection of monkey soluble FasL (sFasL) under sandwich enzyme-linked immunosorbent assay (ELISA). Plasma from normal monkey did not contain detectable levels of sFasL, whereas plasma from monkeys acutely infected with simian immunodeficiency virus (SIV) displayed increased levels of sFasL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-1759(03)00187-xDOI Listing
July 2003