Publications by authors named "Nina Weishaupt"

12 Publications

  • Page 1 of 1

APP21 transgenic rats develop age-dependent cognitive impairment and microglia accumulation within white matter tracts.

J Neuroinflammation 2018 Aug 28;15(1):241. Epub 2018 Aug 28.

Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5C1, Canada.

Background: Most of the animal models commonly used for preclinical research into Alzheimer's disease (AD) largely fail to address the pathophysiology, including the impact of known risk factors, of the widely diagnosed sporadic form of the disease. Here, we use a transgenic rat (APP21) that does not develop AD-like pathology spontaneously with age, but does develop pathology following vascular stress. To further the potential of this novel rat model as a much-needed pre-clinical animal model of sporadic AD, we characterize APP21 transgenic rats behaviorally and histologically up to 19 months of age.

Methods: The open field test was used as a measure of activity; and the Morris water maze was used to assess learning, memory, and strategy shift. Neuronal loss and microglia activation were also assessed throughout the brain.

Results: APP21 transgenic rats showed deficits in working memory from an early age, yet memory recall performance after 24 and 72 h was equal to that of wildtype rats and did not deteriorate with age. A deficit in strategy shift was observed at 19 months of age in APP21 transgenic rats compared to Fischer wildtype rats. Histologically, APP21 transgenic rats demonstrated accelerated white matter inflammation compared to wildtype rats, but interestingly no differences in neuron loss were observed.

Conclusions: The combined presence of white matter pathology and executive function deficits mirrored what is often found in patients with mild cognitive impairment or early dementia, and suggests that this rat model will be useful for translationally meaningful studies into the development and prevention of sporadic AD. The presence of widespread white matter inflammation as the only observed pathological correlate for cognitive deficits raises new questions as to the role of neuroinflammation in cognitive decline.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-018-1273-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114740PMC
August 2018

Inhibition of the primary motor cortex and the upgoing thumb sign.

eNeurologicalSci 2017 Sep 19;8:31-33. Epub 2017 Jul 19.

Department of Clinical Neurological Science, University Hospital, University of Western Ontario, Ontario, Canada.

Background: The upgoing thumb sign has been frequently observed in patients with minor strokes and transient ischemic attacks as an indicator of brain involvement. We assessed the effect of primary motor cortex (M1) inhibition in the development of the upgoing thumb sign.

Methods: Used repetitive Transcranial Magnetic Stimulation (rTMS, 1 Hz frequency for 15 min, 1s ISI, 900 pulses) at 60% of resting motor threshold to inhibit the right or left primary motor cortex of 10 healthy individuals. Participants were examined before and after rTMS by a neurologist who was blind to the site of motor cortex inhibition.

Results: 10 neurological intact participants (5 women/5 men) were recruited for this study. 2 cases were excluded due to pre-existing possible thumb signs. After the inhibition of the primary motor cortex, in 6 subjects out of 8, we observed a thumb sign contralateral to the site of primary motor cortex inhibition. In one subject an ipsilateral thumbs sign was noted. In another case, we did not find an upgoing thumb sign.

Conclusion: The upgoing thumb sign is a subtle neurological finding that may be related to the primary motor cortex or corticospinal pathways involvements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ensci.2017.07.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730890PMC
September 2017

Age-dependent and regional heterogeneity in the long-chain base of A-series gangliosides observed in the rat brain using MALDI Imaging.

Sci Rep 2017 11 23;7(1):16135. Epub 2017 Nov 23.

Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.

Alterations in the long chain base of the sphingosine moiety of gangliosides have been shown to play a role in neurodevelopment and neurodegeneration. Indeed, the accumulation of d20:1 sphingosine has been referred to as a metabolic marker of aging in the brain, however, this remains to be shown in simple gangliosides GM2 and GM3. In this study, Matrix-assisted laser desorption/ionization Imaging Mass Spectrometry (MALDI IMS) was used to examine the neuroanatomical distribution of A-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1) in Fisher 344 rats across the lifespan. The ratio of d20:1/d18:1 species was determined across 11 regions of interest in the brain. Interestingly, a decrease in the d20:1/d18:1 ratio for GM2 and GM3 was observed during early development with the exception of the peri-ventricular corpus callosum, where an age-dependent increase was observed for ganglioside GM3. An age-dependent increase in d20:1 species was confirmed for complex gangliosides GM1 and GD1 with the most significant increase during early development and a high degree of anatomical heterogeneity during aging. The unique neuroanatomically-specific responses of d20:1 ganglioside abundance may lead to a better understanding of regional vulnerability to damage in the aging brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-16389-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701003PMC
November 2017

Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy.

Glia 2018 02 25;66(2):327-347. Epub 2017 Oct 25.

Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada.

For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23245DOI Listing
February 2018

Motor and Hippocampal Dependent Spatial Learning and Reference Memory Assessment in a Transgenic Rat Model of Alzheimer's Disease with Stroke.

J Vis Exp 2016 Mar 22(109). Epub 2016 Mar 22.

Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University;

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that results in neurodegeneration and memory loss. While age is a major risk factor for AD, stroke has also been implicated as a risk factor and an exacerbating factor. The co-morbidity of stroke and AD results in worsened stroke-related motor control and AD-related cognitive deficits when compared to each condition alone. To model the combined condition of stroke and AD, a novel transgenic rat model of AD, with a mutated form of amyloid precursor protein (a key protein involved in the development of AD) incorporated into its DNA, is given a small unilateral striatal stroke. For a model with the combination of both stroke and AD, behavioral tests that assess stroke-related motor control, locomotion and AD-related cognitive function must be implemented. The cylinder task involves a cost-efficient, multipurpose apparatus that assesses spontaneous forelimb motor use. In this task, a rat is placed in a cylindrical apparatus, where the rat will spontaneously rear and contact the wall of the cylinder with its forelimbs. These contacts are considered forelimb motor use and quantified during video analysis after testing. Another cost-efficient motor task implemented is the beam-walk task, which assesses forelimb control, hindlimb control and locomotion. This task involves a rat walking across a wooden beam allowing for the assessment of limb motor control through analysis of forelimb slips, hindlimb slips and falls. Assessment of learning and memory is completed with Morris water maze for this behavioral paradigm. The protocol starts with spatial learning, whereby the rat locates a stationary hidden platform. After spatial learning, the platform is removed and both short-term and long-term spatial reference memory is assessed. All three of these tasks are sensitive to behavioral differences and completed within 28 days for this model, making this paradigm time-efficient and cost-efficient.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/53089DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829052PMC
March 2016

Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions.

Front Neurosci 2016 2;10:81. Epub 2016 Mar 2.

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada.

Secondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model. Brain regions posterior to the prefrontal cortical infarct were analyzed for ongoing neurodegeneration using FluoroJadeB (FJB) and for neuroinflammation using Iba1 and OX-6 immunohistochemistry 28 days post-stroke. The FJB-positive dorsomedial nucleus of the thalamus (DMN) and retrosplenial area (RSA) of the cortex displayed substantial neuroinflammation. Significant neuronal loss was only observed within the cortex. Significant microglia recruitment and activation in the FJB-positive internal capsule indicates remote white matter pathology. These findings demonstrate that even regions far remote from an infarct are affected predictably based on anatomical connectivity, and that white matter inflammation is an integral part of remote pathology. The delayed nature of this pathology makes it a valid target for preventative treatment, potentially with an extended time window of opportunity for therapeutic intervention using anti-inflammatory agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2016.00081DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773446PMC
March 2016

Differential Anatomical Expression of Ganglioside GM1 Species Containing d18:1 or d20:1 Sphingosine Detected by MALDI Imaging Mass Spectrometry in Mature Rat Brain.

Front Neuroanat 2015 1;9:155. Epub 2015 Dec 1.

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London ON, Canada.

GM1 ganglioside plays a role in essential neuronal processes, including differentiation, survival, and signaling. Yet, little is known about GM1 species with different sphingosine bases, such as the most abundant species containing 18 carbon atoms in the sphingosine chain (GM1d18:1), and the less abundant containing 20 carbon atoms (GM1d20:1). While absent in the early fetal brain, GM1d20:1 continues to increase throughout pre- and postnatal development and into old age, raising questions about the functional relevance of the GM1d18:1 to GM1d20:1 ratio. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a novel technology that allows differentiation between these two GM1 species and quantification of their expression within an anatomical context. Using this technology, we find GM1d18:1/d20:1 expression ratios are highly specific to defined anatomical brain regions in adult rats. Thus, the ratio was significantly different among different thalamic nuclei and between the corpus callosum and internal capsule. Differential GM1d18:1/GM1d20:1 ratios measured in hippocampal subregions in rat brain complement previous studies conducted in mice. Across layers of the sensory cortex, opposing expression gradients were found for GM1d18:1 and GM1d20:1. Superficial layers demonstrated lower GM1d18:1 and higher GM1d20:1 signal than other layers, while in deep layers GM1d18:1 expression was relatively high and GM1d20:1 expression low. By far the highest GM1d18:1/d20:1 ratio was found in the amygdala. Differential expression of GM1 with d18:1- or d20:1-sphingosine bases in the adult rat brain suggests tight regulation of expression and points toward a distinct functional relevance for each of these GM1 species in neuronal processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnana.2015.00155DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664653PMC
December 2015

Characterization of Behaviour and Remote Degeneration Following Thalamic Stroke in the Rat.

Int J Mol Sci 2015 Jun 17;16(6):13921-36. Epub 2015 Jun 17.

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.

Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought to include inflammation. We induce ischemia by unilateral injection of endothelin-I into the rat dorsomedial thalamic nucleus, which has defined reciprocal connections to the frontal cortex. We use a comprehensive test battery to probe for changes in behaviour, including executive functions. After a four-week recovery period, brain sections are stained with markers for degeneration, microglia, astrocytes and myelin. Degenerative processes are localized within the stroke core and along the full thalamocortical projection, which does not translate into measurable behavioural deficits. Significant microglia recruitment, astrogliosis or myelin loss along the axonal projection or within the frontal cortex cannot be detected. These findings indicate that critical effects of stroke-induced axonal degeneration may only be measurable beyond a threshold of stroke severity and/or follow a different time course. Further investigations are needed to clarify the impact of inflammation accompanying axonal degeneration on delayed remote atrophy after stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms160613921DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490531PMC
June 2015

Lipopolysaccharide can induce errors in anatomical measures of neuronal plasticity by increasing tracing efficacy.

Neurosci Lett 2013 Nov 21;556:181-5. Epub 2013 Oct 21.

Centre for Neuroscience, University of Alberta, 3-88 Corbett Hall, Edmonton, AB T6E 2G4, Canada. Electronic address:

Evidence suggests that activating certain components of the immune system may increase regeneration and plasticity in the injured central nervous system. Investigating the effect of lipopolysaccharide (LPS), a potent endotoxin and immune activator, on neuronal plasticity in rat models of spinal cord injury, we discovered that systemic administration of LPS can increase the number of descending motor axons that transport neuronal tracers anterogradely to the spinal cord. This effect of LPS was not observed across all motor tracts traced in two different experiments, but was significant for two different tracers administered to corticospinal tract neurons. Densitometry measurement of traced corticospinal axons within the cervical gray matter revealed that normalization to the number of traced axons is crucial to avoid false-positive reports of increased plasticity following LPS injection. These findings indicate that assessments of neuronal growth based on neuronal tracing techniques should be normalized when inflammation or immune activation is an experimental variable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2013.10.025DOI Listing
November 2013

Motor axonal regeneration after partial and complete spinal cord transection.

J Neurosci 2012 Jun;32(24):8208-18

Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.

We subjected rats to either partial midcervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared with several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and T3 complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair and the need for additional control and shaping of axonal regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0308-12.2012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407545PMC
June 2012

Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects.

Behav Brain Res 2010 Dec 4;214(2):323-31. Epub 2010 Jun 4.

Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada.

We investigated the contribution of corticospinal tract (CST) plasticity to training-induced recovery and side effects following spinal cord injury (SCI). Rats were divided into three lesion groups: a unilateral lesion of the dorsal funiculus, the lateral funiculus or a lesion of the entire dorsolateral quadrant (DLQ). Following surgery, rats were distributed into a training group and an untrained group. Trained rats received rehabilitative training in skilled reaching 6 days a week, starting 4 days post-lesion. Following 6 weeks, all rats were tested in reaching (trained task) and crossing a horizontal ladder (untrained task). We found that trained rats with a lesion involving the dorsal column were significantly better in reaching compared to untrained animals. However, when crossing the horizontal ladder, trained rats made significantly more mistakes than untrained animals. Interestingly, rats with a lateral funiculus lesion did not show either effect. A subsequent ablation of the pyramidal tract (pyramidotomy) in rats with a DLQ-lesion significantly reduced but did not eliminate the reaching success. This spared function suggests that other descending systems contributed to the training-induced recovery. In addition, motor-evoked potentials (MEP) from cortical stimulation could still be evoked after pyramidotomy. Further, blocking synaptic transmission passing through the red nucleus using muscimol did not influence the occurrence of MEP's, suggesting that other descending pathways, like the reticulospinal tract, were involved in functional recovery. In summary, this study demonstrates that training-induced CST plasticity may contribute to recovery of motor function, but may also negatively affect untrained tasks as previously reported.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2010.05.053DOI Listing
December 2010

Secondary damage in the spinal cord after motor cortex injury in rats.

J Neurotrauma 2010 Aug;27(8):1387-97

Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada.

When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2010.1346DOI Listing
August 2010