Publications by authors named "Nina Pfannkuchen"

2 Publications

  • Page 1 of 1

Evaluation of [Ac]Ac-DOTA for α-Therapy of Bone Metastases.

Curr Radiopharm 2018 ;11(3):223-230

Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany.

Background: Conjugates of bisphosphonates with macrocyclic chelators possess high potential in bone targeted radionuclide imaging and therapy. DOTAZOL, zoledronic acid conjugated to DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), demonstrated promising results in vivo in small animals as well as in first patient applications using 68Ga for diagnosis via PET and the lowenergy β-emitter 177Lu for therapy of painful bone metastases. In consideration of the fact that targeted α-therapy probably offers various advantages over the use of β--emitters, the 225Ac-labelled derivative [225Ac]Ac-DOTAZOL was synthesized and evaluated in vivo. Here, we report on radiolabelling and biodistribution of [225Ac]Ac-DOTAZOL in healthy Wistar rats.

Methods: DOTAZOL was labelled with 225Ac and injected without further purification into the tail vein with activities of 404 ± 47 kBq per animal. Ex vivo biodistribution studies were performed in healthy Wistar rats at 1 hour, 24 hours, 5 days and 10 days post injection. The accumulation of [225Ac]Ac- DOTAZOL on healthy bone and soft tissue organs was determined in terms of SUV. The results were compared to those of other radiolabelled bisphosphonates such as [68Ga]Ga-DOTAZOL and [177Lu]Lu- DOTAZOL. A group of 7 animals was observed over a period of 3 month after application of 394 kBq ± 10 kBq of [225Ac]Ac-DOTAZOL for signs of toxicity. After 3 months, kidneys were microscopically analysed for signs of chronic kidney damage.

Results: Radiolabelling of DOTAZOL with 225Ac at 98 °C provided radiochemical yields ≥98 % within 30 minutes. [225Ac]Ac-DOTAZOL showed high femur uptake (SUVfemur = 4.99 ± 0.97, 10 d p.i.), which was comparable to that of other Me(III)-DOTAZOL derivatives. Ratios between bone uptake and blood pool activity reached levels of 5, 940, 2181 and 2409 at 1 hour, 24 hours, 5 days and 10 days post injection. During the observation period of the first two month no toxicity was observed clinically. Histopathology of kidneys after 3 month revealed significant tubular damage in most of the animals.

Conclusion: [225Ac]Ac-DOTAZOL repeats the well-known pharmacology of DOTAZOL derivatives in preclinical evaluations. It thus may be considered for translational application together with strategies to reduce renal toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874471011666180604083911DOI Listing
January 2019

Novel Radiolabeled Bisphosphonates for PET Diagnosis and Endoradiotherapy of Bone Metastases.

Pharmaceuticals (Basel) 2017 May 18;10(2). Epub 2017 May 18.

Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany.

Bone metastases, often a consequence of breast, prostate, and lung carcinomas, are characterized by an increased bone turnover, which can be visualized by positron emission tomography (PET), as well as single-photon emission computed tomography (SPECT). Bisphosphonate complexes of Tc are predominantly used as SPECT tracers. In contrast to SPECT, PET offers a higher spatial resolution and, owing to the Ge/Ga generator, an analog to the established Tc generator exists. Complexation of Ga(III) requires the use of chelators. Therefore, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), NOTA (1,4,7-triazacyclododecane-1,4,7-triacetic acid), and their derivatives, are often used. The combination of these macrocyclic chelators and bisphosphonates is currently studied worldwide. The use of DOTA offers the possibility of a therapeutic application by complexing the β-emitter Lu. This overview describes the possibility of diagnosing bone metastases using [Ga]Ga-BPAMD (Ga-labeled (4-{[bis-(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl)acetic acid) as well as the successful application of [Lu]Lu-BPAMD for therapy and the development of new diagnostic and therapeutic tools based on this structure. Improvements concerning both the chelator and the bisphosphonate structure are illustrated providing new Ga- and Lu-labeled bisphosphonates offering improved pharmacological properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph10020045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490402PMC
May 2017