Publications by authors named "Nina Pettersen Hessvik"

7 Publications

  • Page 1 of 1

Current knowledge on exosome biogenesis and release.

Cell Mol Life Sci 2018 01 21;75(2):193-208. Epub 2017 Jul 21.

Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379, Oslo, Norway.

Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-017-2595-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756260PMC
January 2018

PIKfyve inhibition increases exosome release and induces secretory autophagy.

Cell Mol Life Sci 2016 12 20;73(24):4717-4737. Epub 2016 Jul 20.

Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway.

Exosomes are vesicles released from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane. This study aimed to investigate whether the phosphoinositide kinase PIKfyve affects this process. Our results show that in PC-3 cells inhibition of PIKfyve by apilimod or depletion by siRNA increased the secretion of the exosomal fraction. Moreover, quantitative electron microscopy analysis showed that cells treated with apilimod contained more MVBs per cell and more intraluminal vesicles per MVB. Interestingly, mass spectrometry analysis revealed a considerable enrichment of autophagy-related proteins (NBR1, p62, LC3, WIPI2) in exosomal fractions released by apilimod-treated cells, a result that was confirmed by immunoblotting. When the exosome preparations were investigated by electron microscopy a small population of p62-labelled electron dense structures was observed together with CD63-containing exosomes. The p62-positive structures were found in less dense fractions than exosomes in density gradients. Inside the cells, p62 and CD63 were found in the same MVB-like organelles. Finally, both the degradation of EGF and long-lived proteins were shown to be reduced by apilimod. In conclusion, inhibition of PIKfyve increases secretion of exosomes and induces secretory autophagy, showing that these pathways are closely linked. We suggest this is due to impaired fusion of lysosomes with both MVBs and autophagosomes, and possibly increased fusion of MVBs with autophagosomes, and that the cells respond by secreting the content of these organelles to maintain cellular homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-016-2309-8DOI Listing
December 2016

The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells.

J Biol Chem 2015 Feb 17;290(7):4225-37. Epub 2014 Dec 17.

From the Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway, the Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway,

Exosomes are vesicles released by cells after fusion of multivesicular bodies with the plasma membrane. In this study, we have investigated whether ether lipids affect the release of exosomes in PC-3 cells. To increase the cellular levels of ether lipids, the ether lipid precursor hexadecylglycerol was added to cells. Lipidomic analysis showed that this compound was in fact able to double the cellular levels of ether lipids in these cells. Furthermore, increased levels of ether lipids were also found in exosomes released by cells containing high levels of these lipids. Interestingly, as measured by nanoparticle tracking analysis, cells containing high levels of ether lipids released more exosomes than control cells, and these exosomes were similar in size to control exosomes. Moreover, silver staining and Western blot analyses showed that the protein composition of exosomes released in the presence of hexadecylglycerol was changed; the levels of some proteins were increased, and the levels of others were reduced. In conclusion, this study clearly shows that an increase in cellular ether lipids is associated with changes in the release and composition of exosomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M114.593962DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326831PMC
February 2015

Exosomal miRNAs as Biomarkers for Prostate Cancer.

Front Genet 2013 21;4:36. Epub 2013 Mar 21.

Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital Oslo, Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo Oslo, Norway.

miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms - associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles, or apoptotic bodies) or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, non-invasive diagnostic, and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen) has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2013.00036DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604630PMC
March 2013

Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells.

Biochim Biophys Acta 2012 Nov-Dec;1819(11-12):1154-63. Epub 2012 Sep 8.

Department of Biochemistry, The Norwegian Radium Hospital, Oslo, Norway.

Exosomes are small extracellular vesicles released to the extracellular milieu through fusion of multivesicular bodies with the plasma membrane. These vesicles contain microRNAs and might therefore be vehicles transferring genetic information between cells. The aim of this study was to investigate whether there was a sorting of microRNAs into exosomes in the prostate cancer cell line PC-3. In addition, microRNAs in PC-3 cells and in the non-cancerous prostate cell line RWPE-1 were compared. Exosomes were isolated from the conditioned media from PC-3 cells by ultracentrifugation and inspected by electron microscopy. Total RNA was isolated and microRNAs were analyzed by microarray analysis and real time RT-PCR. MicroRNA microarray analysis revealed that the microRNA profile of PC-3 released exosomes was similar to the profile of the corresponding parent cells. Nevertheless, a sorting of certain microRNAs into exosomes was observed, and low number microRNAs (microRNAs with a low number in their name) were found to be underrepresented in these vesicles. Moreover, the miRNA profile of PC-3 cells resembled the miRNA profile of RWPE-1 cells, though some miRNAs were found to be differently expressed in these cell lines. These results show that exosomes from PC-3 cells, in agreement with previous reports from other cell types, contain microRNAs. Furthermore, this study supports the idea that there is a sorting of microRNAs into exosomes and adds a new perspective by pointing at the underrepresentation of low number miRNAs in PC-3 released exosomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagrm.2012.08.016DOI Listing
February 2013

Dietary supplementation with 22-S-hydroxycholesterol to rats reduces body weight gain and the accumulation of liver triacylglycerol.

Lipids 2012 May 18;47(5):483-93. Epub 2012 Mar 18.

Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P. O. Box 1068, Blindern, 0316 Oslo, Norway.

This study explores the pharmacokinetics of 22-S-hydroxycholesterol (22SHC) in vivo in rats. We also carried out a metabolic study to explore whether the beneficial effects observed of 22SHC on glucose and lipid metabolism in vitro could be seen in vivo in rats. In the pharmacokinetic study, rats were given 50 mg/kg of [³H]22-S-hydroxycholesterol before absorption, distribution and excretion were monitored. In the metabolic study, the effect of 22SHC (30 mg/kg/day for 3 weeks) in rats on body weight gain [chow and high-fat diet (HFD)], serum lipids triacylglycerol (TAG) content and gene expression in liver and skeletal muscle were examined. Results showed that 22SHC was well absorbed after oral administration and distributed to most organs and mainly excreted in feces. Rats receiving 22SHC gained less body weight than their controls regardless whether the animals received chow diet or HFD. Moreover, we observed that animals receiving HFD had elevated levels of serum TAG while this was not observed for animals on HFD supplemented with 22SHC. The amount of TAG in liver was reduced after 22SHC treatment in animals receiving either chow diet or HFD. Gene expression analysis revealed that two genes (carnitine palmitoyltransferase 2 and uncoupling protein 3) involved in fatty acid oxidation and energy dissipation were increased in liver. Ucp3 expression (both protein and mRNA level) was increased in skeletal muscle, but insulin-stimulated glucose uptake and TAG content were unchanged. In conclusion, 22SHC seems to be an interesting model substance in the search of treatments for disorders involving aberrations in lipid metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-012-3663-4DOI Listing
May 2012

The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism.

J Steroid Biochem Mol Biol 2012 Feb 25;128(3-5):154-64. Epub 2011 Oct 25.

Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.

The aim of this study was to explore the effects of 22(S)-hydroxycholesterol (22(S)-HC) on lipid and glucose metabolism in human-derived cells from metabolic active tissues. Docking of T0901317 and 22(S)-HC showed that both substances fitted into the ligand binding domain of liver X receptors (LXR). Results show that while several lipogenic genes were induced by T0901317 in myotubes, HepG2 cells and SGBS cells, effect of 22(S)-HC varied more between cell types. In myotubes, most lipogenic genes were downregulated or unchanged by 22(S)-HC, whereas a more diverse pattern was found in HepG2 and SGBS cells. Treatment with 22(S)-HC induced sterol regulatory element binding transcription factor 1 in SGBS and HepG2 cells, but not in myotubes. Fatty acid synthase was downregulated by 22(S)-HC in myotubes, upregulated in SGBS and unchanged in HepG2 cells. De novo lipogenesis was increased by T0901317 in all cell models, whereas differently affected by 22(S)-HC depending on the cell type; decreased in myotubes and HepG2 cells, whereas increased in SGBS cells. Oxidation of linoleic acid was reduced by 22(S)-HC in all cell models while glucose uptake increased and tended to increase in myotubes and SGBS cells, respectively. Cholesterol efflux was unaffected by 22(S)-HC treatment. These results show that 22(S)-HC affects LXR-regulated processes differently in various cell types. Ability of 22(S)-HC to reduce lipogenesis and lipid accumulation in myotubes and hepatocytes indicate that 22(S)-HC might reduce lipid accumulation in non-adipose tissues, suggesting a potential role for 22(S)-HC or a similar LXR modulator in the treatment of type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2011.10.006DOI Listing
February 2012