Publications by authors named "Nik Marzuki Sidik"

5 Publications

  • Page 1 of 1

Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(L-Val-L-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in multiple biological targets.

Arch Microbiol 2020 Oct 3;202(8):2083-2092. Epub 2020 Jun 3.

Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia.

Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-020-01896-xDOI Listing
October 2020

Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish () Embryos.

Toxics 2018 Oct 9;6(4). Epub 2018 Oct 9.

Danish Cancer Society Research Centre, Strandboulevarden 49, 2100 Copenhagen, Denmark.

Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics6040060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316214PMC
October 2018

Erratum to: Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic SUK 25 with Antimicrobial and Cytotoxic Activities.

J Microbiol Biotechnol 2017 11;27(11):2074

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.

This erratum is being published to correct the 2nd author's name of above manuscript by Alshaibani et al. that was published in Journal of Microbiology and Biotechnology (2017, 27: 1249-1256). The 2nd author name(Noraziah MohamadZin) should appear as 'Noraziah Mohamad Zin'.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.2017.2711.2074DOI Listing
November 2017

Gene technology for papaya ringspot virus disease management.

ScientificWorldJournal 2014 17;2014:768038. Epub 2014 Mar 17.

Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.

Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2014/768038DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976845PMC
January 2015

Development of Transgenic Papaya through Agrobacterium-Mediated Transformation.

Int J Genomics 2013 28;2013:235487. Epub 2013 Aug 28.

Centre for General Studies, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia ; Department of Agricultural Extension, Khamarbari, Farmgate, Dhaka 1215, Bangladesh.

Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2013/235487DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771462PMC
September 2013