Publications by authors named "Nigel A Daniels"

3 Publications

  • Page 1 of 1

Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism.

Diabetes Metab Syndr Obes 2021 24;14:759-772. Epub 2021 Feb 24.

Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, Sacramento, CA, 95817, USA.

Purpose: Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion.

Methods: Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca] using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis.

Results: Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca] of INS-1832/13 cells were diminished after the compound treatment.

Conclusion: The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca] and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/DMSO.S284295DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917315PMC
February 2021

Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

Endocrine 2015 Sep 15;50(1):110-22. Epub 2015 Mar 15.

Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.

It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-015-0568-zDOI Listing
September 2015

Diet is critical for prolonged glycemic control after short-term insulin treatment in high-fat diet-induced type 2 diabetic male mice.

PLoS One 2015 29;10(1):e0117556. Epub 2015 Jan 29.

Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701, United States of America; The Diabetes Institute at Ohio University, Athens, Ohio 45701, United States of America.

Background: Clinical studies suggest that short-term insulin treatment in new-onset type 2 diabetes (T2DM) can promote prolonged glycemic control. The purpose of this study was to establish an animal model to examine such a "legacy" effect of early insulin therapy (EIT) in long-term glycemic control in new-onset T2DM. The objective of the study was to investigate the role of diet following onset of diabetes in the favorable outcomes of EIT.

Methodology: As such, C57BL6/J male mice were fed a high-fat diet (HFD) for 21 weeks to induce diabetes and then received 4 weeks of daily insulin glargine or sham subcutaneous injections. Subsequently, mice were either kept on the HFD or switched to a low-fat diet (LFD) for 4 additional weeks.

Principal Findings: Mice fed a HFD gained significant fat mass and displayed increased leptin levels, increasing insulin resistance (poor HOMA-IR) and worse glucose tolerance test (GTT) performance in comparison to mice fed a LFD, as expected. Insulin-treated diabetic mice but maintained on the HFD demonstrated even greater weight gain and insulin resistance compared to sham-treated mice. However, insulin-treated mice switched to the LFD exhibited a better HOMA-IR compared to those mice left on a HFD. Further, between the insulin-treated and sham control mice, in spite of similar HOMA-IR values, the insulin-treated mice switched to a LFD following insulin therapy did demonstrate significantly better HOMA-B% values than sham control and insulin-treated HFD mice.

Conclusion/interpretation: Early insulin treatment in HFD-induced T2DM in C57BL6/J mice was only beneficial in animals that were switched to a LFD after insulin treatment which may explain why a similar legacy effect in humans is achieved clinically in only a portion of cases studied, emphasizing a vital role for diet adherence in diabetes control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117556PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310595PMC
February 2016