Publications by authors named "Niels T Haumann"

2 Publications

  • Page 1 of 1

Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate.

Brain Res 2021 03 6;1754:147248. Epub 2021 Jan 6.

Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy. Electronic address:

Evoked cortical responses (ERs) have mainly been studied in controlled experiments using simplified stimuli. Though, an outstanding question is how the human cortex responds to the complex stimuli encountered in realistic situations. Few electroencephalography (EEG) studies have used Music Information Retrieval (MIR) tools to extract cortical P1/N1/P2 to acoustical changes in real music. However, less than ten events per music piece could be detected leading to ERs due to limitations in automatic detection of sound onsets. Also, the factors influencing a successful extraction of the ERs have not been identified. Finally, previous studies did not localize the sources of the cortical generators. This study is based on an EEG/MEG dataset from 48 healthy normal hearing participants listening to three real music pieces. Acoustic features were computed from the audio signal of the music with the MIR Toolbox. To overcome limits in automatic methods, sound onsets were also manually detected. The chance of obtaining detectable ERs based on ten randomly picked onset points was less than 1:10,000. For the first time, we show that naturalistic P1/N1/P2 ERs can be reliably measured across 100 manually identified sound onsets, substantially improving the signal-to-noise level compared to <10 trials. More ERs were measurable in musical sections with slow event rates (0.2 Hz-2.5 Hz) than with fast event rates (>2.5 Hz). Furthermore, during monophonic sections of the music only P1/P2 were measurable, and during polyphonic sections only N1. Finally, MEG source analysis revealed that naturalistic P2 is located in core areas of the auditory cortex.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2020.147248DOI Listing
March 2021

Influence of Musical Enculturation on Brain Responses to Metric Deviants.

Front Neurosci 2018 18;12:218. Epub 2018 Apr 18.

Department of Clinical Medicine, Center for Music in the Brain, Royal Academy of Music, Aarhus University, Aarhus, Denmark.

The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a "Western group" of listeners ( = 12) mainly exposed to Western music and a "Bicultural group" of listeners ( = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the "Western group" the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the "Bicultural group." In support of this finding, there was also a trend of the "Western group" to rate omitted beats as more surprising on odd than even metric positions, whereas the "Bicultural group" seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source localization analyses suggest that auditory, inferior temporal, sensory-motor, superior frontal, and parahippocampal regions might be involved in eliciting the MMNm to the metric deviants. These findings suggest that effects of music enculturation can be measured on MMNm responses to attenuated tones on specific metric positions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2018.00218DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915898PMC
April 2018
-->