Publications by authors named "Nicolas Chatron"

46 Publications

Alpha satellite insertion close to an ancestral centromeric region.

Mol Biol Evol 2021 Aug 31. Epub 2021 Aug 31.

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.

Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by FISH a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by lack of constriction and absence of CENP-A binding. The insertion was associated with a 2.8 kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats (LTRs) and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20-25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name 'alpha satellite insertion'. It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msab244DOI Listing
August 2021

Description of a novel patient with the TRPM3 recurrent p.Val837Met variant.

Eur J Med Genet 2021 Aug 23;64(11):104320. Epub 2021 Aug 23.

Hospices Civils de Lyon, Service de Génétique - Centre de Référence Anomalies du Développement, Bron, France; Centre de Recherche en Neurosciences de Lyon, Équipe GENDEV, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France. Electronic address:

De novo heterozygous missense mutations in TRPM3 have been shown to cause developmental and epileptic encephalopathies (DEE). It is a very rare condition, as only 9 patients have been described to date. We report here a novel patient carrying the recurrent p.Val837Met variant and presenting new clinical features, such as trigonocephaly, expanding the phenotypical spectrum of the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2021.104320DOI Listing
August 2021

Variants in USP48 encoding ubiquitin hydrolase are associated with autosomal dominant non-syndromic hereditary hearing loss.

Hum Mol Genet 2021 Sep;30(19):1785-1796

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant is situated in a loop that might influence the binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining ES, animal modeling, immunohistology and molecular assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab145DOI Listing
September 2021

Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy.

Am J Hum Genet 2021 05;108(5):857-873

GeneDx, Gaithersburg, MD 20877, USA.

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206167PMC
May 2021

Novel missense mutations in PTCHD1 alter its plasma membrane subcellular localization and cause intellectual disability and autism spectrum disorder.

Hum Mutat 2021 Jul 3;42(7):848-861. Epub 2021 May 3.

UMR1253, iBrain, INSERM, University of Tours, Tours, France.

The X-linked PTCHD1 gene, encoding a synaptic membrane protein, has been involved in neurodevelopmental disorders with the description of deleterious genomic microdeletions or truncating coding mutations. Missense variants were also identified, however, without any functional evidence supporting their pathogenicity level. We investigated 13 missense variants of PTCHD1, including eight previously described (c.152G>A,p.(Ser51Asn); c.217C>T,p.(Leu73Phe); c.517A>G,p.(Ile173Val); c.542A>C,p.(Lys181Thr); c.583G>A,p.(Val195Ile); c.1076A>G,p.(His359Arg); c.1409C>A,p.(Ala470Asp); c.1436A>G,p.(Glu479Gly)), and five novel ones (c.95C>T,p.(Pro32Leu); c.95C>G,p.(Pro32Arg); c.638A>G,p.(Tyr213Cys); c.898G>C,p.(Gly300Arg); c.928G>C,p.(Ala310Pro)) identified in male patients with intellectual disability (ID) and/or autism spectrum disorder (ASD). Interestingly, several of these variants involve amino acids localized in structural domains such as transmembrane segments. To evaluate their potentially deleterious impact on PTCHD1 protein function, we performed in vitro overexpression experiments of the wild-type and mutated forms of PTCHD1-GFP in HEK 293T and in Neuro-2a cell lines as well as in mouse hippocampal primary neuronal cultures. We found that six variants impaired the expression level of the PTCHD1 protein, and were retained in the endoplasmic reticulum suggesting abnormal protein folding. Our functional analyses thus provided evidence of the pathogenic impact of missense variants in PTCHD1, which reinforces the involvement of the PTCHD1 gene in ID and in ASD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24208DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359977PMC
July 2021

PCSK9 post-transcriptional regulation: Role of a 3'UTR microRNA-binding site variant in linkage disequilibrium with c.1420G.

Atherosclerosis 2020 12 10;314:63-70. Epub 2020 Oct 10.

Service de Biochimie et Biologie Moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, F-69677, Bron Cedex, France; Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, F-69100, Villeurbanne, France. Electronic address:

Background And Aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol homeostasis. A common variant, the G allele in position c.1420 (c.1420G), has been associated with a decrease of both plasma PCSK9 and LDL-cholesterol concentrations. However, the functional effect of this variant is currently not well understood. We hypothesized that it could be explained by functional variants in linkage disequilibrium (LD), more specifically, by variants located in the PCSK9 3' UTR as targets for miR regulation of PCSK9 expression.

Methods: Variations in LD with c.1420G were studied in 1029 patients followed for dyslipidaemia. In silico studies identified potential miRNA binding sites induced by PCSK9 3'UTR variants in LD with c.1420G. Their functionality was studied with a luciferase reporter assay in HuH-7 cells and confirmed by cotransfection of anti-miRNAs.

Results: The c.*571C and c.*234T variants located in the PCSK9 3'UTR were found in tight LD with c.1420G (D' = 0.962; LOD = 163.06). The haplotype carrying c.*571C showed a 6.7% decrease in luciferase activity (p = 0.003). Inhibition of hsa-miR-1228-3p and hsa-miR-143-5p counteracted their effect on the haplotype carrying c.*571C allele, suggesting that PCSK9 expression was decreased by the endogenous binding of hsa-miR-1228-3p and hsa-miR-143-5p on its 3'UTR.

Conclusions: This post-transcriptional regulation might contribute towards the association between plasma PCSK9 levels and c.1420G. Such regulation of PCSK9 expression may open new perspectives for the treatment of hypercholesterolemia and atherosclerosis cardiovascular diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2020.10.010DOI Listing
December 2020

Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome.

J Med Genet 2020 Nov 10. Epub 2020 Nov 10.

Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK.

Background: Pathogenic variants of encoding the β subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia.

Methods: We used echocardiography and telemetric ECG recordings to investigate consequences of loss in mouse.

Results: We delineated a key role of in heart sinus conduction and showed that -inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. mice were smaller and had a smaller heart than and , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in mice. In contrast, mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients.

Conclusions: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of signalling in the autonomic control of the heart will pave the way for future drug screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107015DOI Listing
November 2020

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns.

Genet Med 2021 02 4;23(2):363-373. Epub 2020 Nov 4.

Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.

Purpose: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy.

Methods: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy.

Results: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism.

Conclusion: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-00988-9DOI Listing
February 2021

Development of a new expanded next-generation sequencing panel for genetic diseases involved in dyslipidemia.

Clin Genet 2020 12 4;98(6):589-594. Epub 2020 Sep 4.

Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France.

The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13832DOI Listing
December 2020

Progressive Myoclonus Epilepsy Caused by a Homozygous Splicing Variant of SLC7A6OS.

Ann Neurol 2021 02 5;89(2):402-407. Epub 2020 Nov 5.

Genetics Department, Lyon Civil Hospices, Lyon, France.

Exome sequencing was performed in 2 unrelated families with progressive myoclonus epilepsy. Affected individuals from both families shared a rare, homozygous c.191A > G variant affecting a splice site in SLC7A6OS. Analysis of cDNA from lymphoblastoid cells demonstrated partial splice site abolition and the creation of an abnormal isoform. Quantitative reverse transcriptase polymerase chain reaction and Western blot showed a marked reduction of protein expression. Haplotype analysis identified a ~0.85cM shared genomic region on chromosome 16q encompassing the c.191A > G variant, consistent with a distant ancestor common to both families. Our results suggest that biallelic loss-of-function variants in SLC7A6OS are a novel genetic cause of progressive myoclonus epilepsy. ANN NEUROL 2021;89:402-407.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.25941DOI Listing
February 2021

A de novo frameshift pathogenic variant in TBR1 identified in autism without intellectual disability.

Hum Genomics 2020 09 18;14(1):32. Epub 2020 Sep 18.

Lyon Hospitals, Genetics Service and National Reference Centre for Developmental Anomalies, Lyon, France.

Background: In order to be able to provide accurate genetic counseling to patients with Autism Spectrum Disorder (ASD), it is crucial to identify correlations between heterogeneous phenotypes and genetic alterations. Among the hundreds of de novo pathogenic variants reported in ASD, single-nucleotide variations and small insertions/deletions were reported in TBR1. This gene encodes a transcription factor that plays a key role in brain development. Pathogenic variants in TBR1 are often associated with severe forms of ASD, including intellectual disability and language impairment.

Methods: Adults diagnosed with ASD but without intellectual disability (diagnosis of Asperger syndrome, according to the DSM-IV) took part in a genetic consultation encompassing metabolic assessments, a molecular karyotype and the screening of a panel of 268 genes involved in intellectual disability, ASD and epilepsy. In addition, the patient reported here went through a neuropsychological assessment, structural magnetic resonance imaging and magnetic resonance spectroscopy measurements.

Results: Here, we report the case of a young adult male who presents with a typical form of ASD. Importantly, this patient presents with no intellectual disability or language impairment, despite a de novo heterozygous frameshift pathogenic variant in TBR1, leading to an early premature termination codon (c.26del, p.(Pro9Leufs*12)).

Conclusion: Based on this case report, we discuss the role of TBR1 in general brain development, language development, intellectual disability and other symptoms of ASD. Providing a detailed clinical description of the individuals with such pathogenic variants should help to understand the genotype-phenotype relationships in ASD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40246-020-00281-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501624PMC
September 2020

Follow-up of two adult brothers with homozygous CEP57 pathogenic variants expands the phenotype of Mosaic Variegated Aneuploidy Syndrome.

Eur J Med Genet 2020 Nov 28;63(11):104044. Epub 2020 Aug 28.

Service de Génétique, Hospices Civils de Lyon, Bron, France; Equipe GENDEV, CRNL, INSERM U1028 CNRS UMR5292 Université Claude Bernard Lyon 1, Lyon, France. Electronic address:

Mosaic Variegated Aneuploidy Syndrome (MVA) is a rare autosomal recessive disorder characterized by mosaic aneuploidies involving multiple chromosomes and tissues. Affected individuals typically present with severe intrauterine and postnatal growth retardation, microcephaly, facial dysmorphism, developmental delay and predisposition to cancer and epilepsy. Three genes, BUB1B, CEP57 and TRIP13, are involved in this syndrome. Only 7 patients carrying pathogenic variants in CEP57 are reported to date. Here we report two adult brothers born to Moroccan related parents, who presented with intrauterine and postnatal growth retardation, microcephaly, facial dysmorphism, learning disabilities, skeletal anomalies with thumb hypoplasia and dental abnormalities. Both brothers have mosaic variegated aneuploidies on blood karyotype. A previously reported homozygous 11 bp duplication was identified in CEP57 in the two brothers. We propose that a FoSTeS (Fork Stalling and Template Switching) mechanism could be involved in the occurrence of this duplication. This report expands the phenotypical spectrum associated with CEP57 and highlights the interest of blood karyotype in patients presenting with short stature and microcephaly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2020.104044DOI Listing
November 2020

Clinical and molecular description of 19 patients with GATAD2B-Associated Neurodevelopmental Disorder (GAND).

Eur J Med Genet 2020 Oct 17;63(10):104004. Epub 2020 Jul 17.

Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.

De novo pathogenic variants in the GATAD2B gene have been associated with a syndromic neurodevelopmental disorder (GAND) characterized by severe intellectual disability (ID), impaired speech, childhood hypotonia, and dysmorphic features. Since its first description in 2013, nine patients have been reported in case reports and a series of 50 patients was recently published, which is consistent with the relative frequency of GATAD2B pathogenic variants in public databases. We report the detailed phenotype of 19 patients from various ethnic backgrounds with confirmed pathogenic GATAD2B variants including intragenic deletions. All individuals presented developmental delay with a median age of 2.5 years for independent walking and of 3 years for first spoken words. GATAD2B variant carriers showed very little subsequent speech progress, two patients over 30 years of age remaining non-verbal. ID was mostly moderate to severe, with one profound and one mild case, which shows a wider spectrum of disease severity than previously reported. We confirm macrocephaly as a major feature in GAND (53%). Most common dysmorphic features included broad forehead, deeply set eyes, hypertelorism, wide nasal base, and pointed chin. Conversely, prenatal abnormalities, non-cerebral malformations, epilepsy, and autistic behavior were uncommon. Other features included feeding difficulties, behavioral abnormalities, and unspecific abnormalities on brain MRI. Improving our knowledge of the clinical phenotype is essential for correct interpretation of the molecular results and accurate patient management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2020.104004DOI Listing
October 2020

Mandibular-pelvic-patellar syndrome is a novel PITX1-related disorder due to alteration of PITX1 transactivation ability.

Hum Mutat 2020 09 15;41(9):1499-1506. Epub 2020 Jul 15.

Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France.

PITX1 is a homeobox transcription factor essential for hindlimb morphogenesis. Two PITX1-related human disorders have been reported to date: PITX1 ectopic expression causes Liebenberg syndrome, characterized by malformation of upper limbs showing a "lower limb" appearance; PITX1 deletions or missense variation cause a syndromic picture including clubfoot, tibial hemimelia, and preaxial polydactyly. We report two novel PITX1 missense variants, altering PITX1 transactivation ability, in three individuals from two unrelated families showing a distinct recognizable autosomal dominant syndrome, including first branchial arch, pelvic, patellar, and male genital abnormalities. This syndrome shows striking similarities with the Pitx1-/- mouse model. A partial phenotypic overlap is also observed with Ischiocoxopodopatellar syndrome caused by TBX4 haploinsufficiency, and with the phenotypic spectrum caused by SOX9 anomalies, both genes being PITX1 downstream targets. Our study findings expand the spectrum of PITX1-related disorders and suggest a common pattern of developmental abnormalities in disorders of the PITX1-TBX4-SOX9 signaling pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24070DOI Listing
September 2020

Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7.

Genet Med 2020 07 7;22(7):1215-1226. Epub 2020 May 7.

Department of Medical Genetics, Lyon Hospices Civils, Lyon, France.

Purpose: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts.

Methods: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts.

Results: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts.

Conclusion: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0792-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093014PMC
July 2020

Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy.

Brain 2020 05;143(5):1447-1461

Neurogenetics Group, VIB-Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium.

Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaa085DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241960PMC
May 2020

Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

Am J Hum Genet 2020 03 27;106(3):356-370. Epub 2020 Feb 27.

Université de Paris, Epigénétique et Destin Cellulaire, CNRS, 75013 Paris, France.

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.01.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058829PMC
March 2020

Defining and expanding the phenotype of -associated developmental epileptic encephalopathy.

Neurol Genet 2019 Dec 10;5(6):e373. Epub 2019 Dec 10.

Department of Epilepsy Genetics and Precision Medicine (K.J.M., E.G., G.R., R.S.M.), The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Institute for Regional Health Services (K.J.M., E.G., R.S.M.), University of Southern Denmark, Odense; Institute of Human Genetics (D.M., R. Jamra, A.F., J.R.L.), University of Leipzig Medical Center, Germany; Institute of Structural Biology (R. Janowski, D.N.), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Paediatric Radiology (C.R.), University of Leipzig Medical Center, Germany; Department of Epilepsy, Sleep and Pediatric Neurophysiology (J.T.), Lyon University Hospital, France; Neuropediatric Unit (A.-L.P., D.M.V., G.L.), Lyon University Hospital, France; Department of Medical Genetics (N.C., G.L.), Lyon University Hospital, France; GenDev Team (N.C.), CNRS UMR 5292, INSERM U1028, CNRL and University of Lyon, France; Department of Genetics (E.B.), University Medical Center Utrecht, The Netherlands; Department of Child Neurology (K.G.), Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Paediatrics (A.P.B.), Copenhagen University Hospital Rigshospitalet, Denmark; Baylor College of Medicine (S.M., K.N.), Children's Hospital of San Antonio; Undiagnosed Diseases Program (G.B., C.P.), Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth; Western Australian Register of Developmental Anomalies (G.B., D.G.), Australia; Telethon Kids Institute and the School of Paediatrics and Child Health (G.B.), University of Western Australia, Perth; Linear Clinical Research (L.D.), WA, Australia; Center of Human Genetics (S.S), Jena University Hospital, Germany; Department of Neuropediatrics (A.D.), Jena University Hospital, Germany; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia, PA; Division of Neuropediatrics (A.M.), University of Leipzig Medical Center, Germany; Amplexa Genetics (H.H.), Odense, Denmark; Clinic for Children (H.H.), Værløse, Denmark; Center for Integrative Brain Research (G.M.), Seattle Children's Research Institute, WA; Department of Pediatrics (G.M.), University of Washington, Seattle; Medical Genetics Unit (F.B.), Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Istituto Dermopatico dell'Immacolata (F.B.), IDI-IRCCS, Rome, Italy; Institute of Human Genetics (T.B., M.H.), University Medical Center Hamburg-Eppendorf, Germany; Childrens Hospital (J.D.), University Medical Center Hamburg-Eppendorf, Germany; University of Copenhagen (G.R.), Denmark; Institute for Human Genetics (P.M.), University Hospital Magdeburg, Germany; Children's Hospital A. Meyer (R.G., A.V.), University of Florence, Italy; and Institute of Pharmaceutical Biotechnology (D.N.), Ulm University, Germany.

Objective: The study is aimed at widening the clinical and genetic spectrum and at assessing genotype-phenotype associations in encephalopathy.

Methods: Through diagnostic gene panel screening in an epilepsy cohort, and recruiting through GeneMatcher and our international network, we collected 10 patients with biallelic variants. In addition, we collected data on 12 patients described in the literature to further delineate the associated phenotype in a total cohort of 22 patients. Computer modeling was used to assess changes on protein folding.

Results: Biallelic pathogenic variants in cause a triad of progressive microcephaly, moderate to severe developmental delay, and early-onset epilepsy. Microcephaly was present at birth in 65%, and in all patients at follow-up. Moderate (14%) or severe (73%) developmental delay was characteristic, with no achievement of sitting (85%), walking (86%), or talking (90%). Additional features included irritability (91%), hypertonia/spasticity (75%), hypotonia (83%), stereotypic movements (75%), and short stature (56%). Seventy-nine percent had pharmacoresistant epilepsy with mainly neonatal onset. Characteristic cranial MRI findings include early-onset progressive atrophy of cerebral cortex (89%) and cerebellum (61%), enlargement of ventricles (95%), and age-dependent delayed myelination (88%). A small subset of patients displayed a less severe phenotype.

Conclusions: These data revealed first genotype-phenotype associations and may serve for improved interpretation of new variants and well-founded genetic counseling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000373DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927360PMC
December 2019

Genome sequencing in cytogenetics: Comparison of short-read and linked-read approaches for germline structural variant detection and characterization.

Mol Genet Genomic Med 2020 03 27;8(3):e1114. Epub 2020 Jan 27.

Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Evry, France.

Background: Structural variants (SVs) include copy number variants (CNVs) and apparently balanced chromosomal rearrangements (ABCRs). Genome sequencing (GS) enables SV detection at base-pair resolution, but the use of short-read sequencing is limited by repetitive sequences, and long-read approaches are not yet validated for diagnosis. Recently, 10X Genomics proposed Chromium, a technology providing linked-reads to reconstruct long DNA fragments and which could represent a good alternative. No study has compared short-read to linked-read technologies to detect SVs in a constitutional diagnostic setting yet. The aim of this work was to determine whether the 10X Genomics technology enables better detection and comprehension of SVs than short-read WGS.

Methods: We included 13 patients carrying various SVs. Whole genome analyses were performed using paired-end HiSeq X sequencing with (linked-read strategy) or without (short-read strategy) Chromium library preparation. Two different bioinformatic pipelines were used: Variants are called using BreakDancer for short-read strategy and LongRanger for long-read strategy. Variant interpretations were first blinded.

Results: The short-read strategy allowed diagnosis of known SV in 10/13 patients. After unblinding, the linked-read strategy identified 10/13 SVs, including one (patient 7) missed by the short-read strategy.

Conclusion: In conclusion, regarding the results of this study, 10X Genomics solution did not improve the detection and characterization of SV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.1114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057128PMC
March 2020

Chromatin remodeling dysfunction extends the etiological spectrum of schizophrenia: a case report.

BMC Med Genet 2020 01 8;21(1):10. Epub 2020 Jan 8.

Institut Neuromyogène, métabolisme énergétique et développement durable, CNRS UMR 5310, INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.

Background: The role of deleterious copy number variations in schizophrenia is well established while data regarding pathogenic variations remain scarce. We report for the first time a case of schizophrenia in a child with a pathogenic mutation of the chromodomain helicase DNA binding protein 2 (CHD2) gene.

Case Presentation: The proband was the second child of unrelated parents. Anxiety and sleep disorders appeared at the age of 10 months. He presented febrile seizures and, at the age of 8, two generalized tonic-clonic seizures. At the age of 10, emotional withdrawal emerged, along with a flat affect, disorganization and paranoid ideation, without seizures. He began to talk and giggle with self. Eventually, the patient presented daily auditory and visual hallucinations. The diagnosis of childhood onset schizophrenia (DSM V) was then evoked. Brain imaging was unremarkable. Wakefulness electroencephalography showed a normal background and some bilateral spike-wave discharges that did not explain the psychosis features. A comparative genomic hybridization array (180 K, Agilent, Santa Clara, CA, USA) revealed an 867-kb 16p13.3 duplication, interpreted as a variant of unknown significance confirmed by a quantitative PCR that also showed its maternal inheritance. Risperidone (1,5 mg per day), led to clinical improvement. At the age of 11, an explosive relapse of epilepsy occurred with daily seizures of various types. The sequencing of a panel for monogenic epileptic disorders and Sanger sequencing revealed a de novo pathogenic heterozygous transition in CHD2 (NM_001271.3: c.4003G > T).

Conclusions: This case underlines that schizophrenia may be, sometimes, underpinned by a Mendelian disease. It addresses the question of systematic genetic investigations in the presence of warning signs such as a childhood onset of the schizophrenia or a resistant epilepsy. It points that, in the absence of pathogenic copy number variation, the investigations should also include a search for pathogenic variations, which means that some of the patients with schizophrenia should benefit from Next Generation Sequencing tools. Last but not least, CHD2 encodes a member of the chromodomain helicase DNA-binding (CHD) family involved in chromatin remodeling. This observation adds schizophrenia to the phenotypic spectrum of chromodomain remodeling disorders, which may lead to innovative therapeutic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12881-019-0946-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950831PMC
January 2020

Asparagine synthetase deficiency: A novel case with an unusual molecular mechanism.

Mol Genet Metab Rep 2019 Dec 1;21:100509. Epub 2019 Nov 1.

Service de Biochimie & Biologie Moléculaire, UF Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, F-69500 Bron, France.

We report the case of a girl with Asparagine synthetase deficiency, an autosomal recessive metabolic disorder characterized by severe microcephaly and epileptic encephalopathy secondary to pathogenic variants in the gene. Genetic explorations found a deletion of and a missense variant on the other allele detected respectively by array comparative genomic hybridization (CGH) and Sanger sequencing. Amino acid analysis provided a biochemical confirmation. Previous cases of Asparagine synthetase deficiency were diagnosed though exome Sequencing. The combination of several techniques (array CGH, sequencing, and biochemical analysis) improves the opportunity to provide accurate diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgmr.2019.100509DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838931PMC
December 2019

A novel lethal recognizable polymicrogyric syndrome caused by ATP1A2 homozygous truncating variants.

Brain 2019 11;142(11):3367-3374

Institut de Pathologie Multi-sites des HCL/Centre de Pathologie et Fœtopathologie Est, Lyon, France.

Polymicrogyria is a heterogeneous malformation of cortical development microscopically defined by an excessive folding of the cortical mantle resulting in small gyri with a fused surface. Polymicrogyria is responsible for a wide range of neurological symptoms (e.g. epilepsy, intellectual disability, motor dysfunction). Most cases have a supposed environmental clastic vascular or infectious origin but progress in genomics has revealed new monogenic entities. We report four cases from two independent families sharing a common recognizable lethal syndromic polymicrogyria of autosomal recessive inheritance. Beyond diffuse polymicrogyria detected prenatally, pathological examination revealed a common pattern associating meningeal arterial calcifications, necrotic and calcified areas in basal ganglia, dentato-olivary dysplasia and severe hypoplasia/agenesis of the pyramidal tracts. In all affected cases, exome sequencing showed a pathogenic homozygous nonsense ATP1A2 variant. This resulted in absence of immunodetectable ATP1A2 protein in two brains analysed. ATP1A2 encodes the alpha-2 isoform of the Na+/K+-ATPase, which is highly expressed in brain tissues and has previously been related to familial hemiplegic migraine (MIM#602481) and alternating hemiplegia of childhood (MIM#104290). Through the description of this genetic entity, we emphasize the possibility of dual mode of transmission for disease-causing genes and provide the key neuropathological features that should prompt geneticists to test for mutations in the ATP1A2 gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awz272DOI Listing
November 2019

Supravalvular Aortic Stenosis Caused by a Familial Chromosome 7 Inversion Disrupting the Gene Uncovered by Whole-Genome Sequencing.

Mol Syndromol 2019 Jul 21;10(4):209-213. Epub 2019 May 21.

Laboratoire de Cytogénétique Constitutionnelle, Service de Génétique, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France.

Apparently, balanced chromosomal rearrangements usually have no phenotypic consequences for the carrier. However, in some cases, they may be associated with an abnormal phenotype. We report herein the case of a 4-year-old boy presenting with clinically isolated supravalvular aortic stenosis (SVAS). No chromosomal imbalance was detected by array CGH. The karyotype showed a balanced paracentric chromosome 7 inversion. Breakpoint characterization using paired-end whole-genome sequencing (WGS) revealed an gene disruption in intron 1, accounting for the phenotype. Family study showed that the inversion was inherited, with incomplete penetrance. To our knowledge, this is the first case of a disruption of the gene characterized by WGS. It contributes to refine the genotype-phenotype correlation in disruption. Although this disruption is a rare etiology of SVAS, it cannot be detected by the diagnostic tests usually performed, such as array CGH or sequencing methods (Sanger, panel, or exome sequencing). With the future perspective of WGS as a diagnostic tool, it will be important to include a structural variation analysis in order to detect balanced rearrangements and gene disruption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000500215DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738261PMC
July 2019

Reversion SAMD9 Mutations Modifying Phenotypic Expression of MIRAGE Syndrome and Allowing Inheritance in a Usually Disorder.

Front Endocrinol (Lausanne) 2019 11;10:625. Epub 2019 Sep 11.

Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.

MIRAGE (Myelodysplasia, Infection, Restriction of growth, Adrenal hypoplasia, Genital phenotypes, Enteropathy) syndrome is a severe multisystem disorder with high mortality. It is caused by a heterozygous gain of function mutation in the growth repressor gene . The increasing number of reported cases displays a spectrum of phenotypes that may be explained by an adaptation mechanism, with appearance of a somatic second hit mutation with revertant effects. To determine the genetic basis of the MIRAGE syndrome rapidly corrected in a living and healthy 46,XY patient. A 46,XY patient born with growth restriction and disorders of sex development had thrombocytopenia and necrotizing enterocolitis during the neonatal period suggestive of the syndrome. Faced with the rapid improvement of the patient's phenotype, an adaptation mechanism was sought by repeating genetic analysis at different ages; her parents also underwent genetic analysis. The previously described p.(Thr778Ile) mutation was identified and surprisingly transmitted by the asymptomatic mother in this usually syndrome. To explain the rapid improvement of the patient's phenotype and absence of symptoms in the mother, an adaptation mechanism was sought. For the mother, a non-sense mutation was found (p.(Arg221)) in , and most likely appeared . It was not transmitted to her child. The child harbored a different non-sense mutation (p.(Arg285)) that most likely appeared near day 20. We show that pathogenic variants can be inherited from a healthy parent as the adaptation mechanism may arise early in life and mask symptoms. Presence of revertant mosaicism mutations could explain "incomplete penetrance" in other disease. For a better management and outcomes in patients, appearance of this natural gene therapy should be sought by repeating genetic analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2019.00625DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749008PMC
September 2019

SOX3 duplication: A genetic cause to investigate in fetuses with neural tube defects.

Prenat Diagn 2019 10 9;39(11):1026-1034. Epub 2019 Aug 9.

Department of Histology Embryology and Cytogenetics, Necker-Enfants Malades Hospital, APHP, Paris, France.

Objective: Neural tube defects (NTDs) are one of the most common congenital anomalies caused by a complex interaction of many genetic and environmental factors. In about 10% of cases, NTDs are associated with genetic syndromes or chromosomal anomalies. Among these, SOX3 duplication has been reported in some isolated cases. The phenotype associated with this microduplication is variable and includes myelomeningocele (MMC) in both sexes as well as hypopituitarism and cognitive impairment in males. In order to determine the prevalence of this anomaly in fetuses with MMC, a retrospective cohort of fetuses with MMC was analyzed by quantitative PCR (qPCR) targeting SOX3 locus.

Methods: The detection of an SOX3 microduplication by chromosomal microarray analysis (CMA) in two female fetuses with MMC prompted us to analyze retrospectively by qPCR this gene in a cohort of 53 fetuses with MMC.

Results: In addition to our two initial cases, one fetus harboring an Xq27.1q28 duplication that encompasses the SOX3 gene was detected.

Conclusion: Our data demonstrate that SOX3 duplication is a genomic imbalance involved in the pathogenesis of NTDs. In addition, our survey highlights the importance of CMA testing in fetuses with NTDs to enable genetic counseling upstream of any considerations of in utero fetal surgery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.5523DOI Listing
October 2019

Identification of mobile retrocopies during genetic testing: Consequences for routine diagnosis.

Hum Mutat 2019 11 12;40(11):1993-2000. Epub 2019 Jul 12.

Genetics Department, Hospices Civils de Lyon, Lyon, France.

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23845DOI Listing
November 2019

Molecular investigation, using chromosomal microarray and whole exome sequencing, of six patients affected by Williams Beuren syndrome and Autism Spectrum Disorder.

Orphanet J Rare Dis 2019 05 31;14(1):121. Epub 2019 May 31.

Service de Génétique, Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Bron, France.

Williams Beuren syndrome (WBS) is a multiple malformations/intellectual disability (ID) syndrome caused by 7q11.23 microdeletion and clinically characterized by a typical neurocognitive profile including excessive talkativeness and social disinhibition, often defined as "overfriendliness" and "hyersociability". WBS is generally considered as the polar opposite phenotype to Autism Spectrum Disorder (ASD). Surprisingly, the prevalence of ASD has been reported to be significantly higher in WBS (12%) than in general population (1%). Our study aims to investigate the molecular basis of the peculiar association of ASD and WBS. We performed chromosomal microarray analysis and whole exome sequencing in six patients presenting with WBS and ASD, in order to evaluate the possible presence of chromosomal or gene variants considered as pathogenic.Our study shows that the presence of ASD in the recruited WBS patients is due to i) neither atypically large deletions; ii) nor the presence of pathogenic variants in genes localized in the non-deleted 7q11.23 allele which would unmask recessive conditions; iii) moreover, we did not identify a second, indisputable independent genetic diagnosis, related to pathogenic Copy Number Variations or rare pathogenic exonic variants in known ID/ASD causing genes, although several variants of unknown significance were found. Finally, imprinting effect does not appear to be the only cause of autism in WBS patients, since the deletions occurred in alleles of both maternal and paternal origin.The social disinhibition observed in WBS does not follow common social norms and symptoms overlapping with ASD, such as restricted interests and repetitive behavior, can be observed in "typical" WBS patients: therefore, the terms "overfriendliness" and "hypersociability" appear to be a misleading oversimplification.The etiology of ASD in WBS is likely to be heterogeneous. Further studies on large series of patients are needed to clarify the observed variability in WBS social communication, ranging from excessive talkativeness and social disinhibition to absence of verbal language and social deficit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13023-019-1094-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545013PMC
May 2019

Comment on "Trisomy 21 noninvasive prenatal testing for twin pregnancies".

Prenat Diagn 2019 06 20;39(7):571-572. Epub 2019 May 20.

Twin Pregnancy Unit, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Lyon, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.5456DOI Listing
June 2019

Severe hemophilia A caused by an unbalanced chromosomal rearrangement identified using nanopore sequencing.

J Thromb Haemost 2019 07 20;17(7):1097-1103. Epub 2019 May 20.

Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France.

Essentials No F8 genetic abnormality is detected in about 2% of severe hemophilia A patients. Detection of F8 structural variants remains a challenge. We identified a new F8 rearrangement in a severe hemophilia A patient using nanopore sequencing. We highlight the value of single-molecule long-read sequencing technologies in a genomics laboratory.

Background: No F8 genetic abnormality is detected in about 2% of severe hemophilia A patients using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal.

Objective: To characterize, in a genetically unresolved severe hemophilia A patient, a new Xq28 rearrangement disrupting F8 using comprehensive molecular techniques including nanopore sequencing.

Results: Long-range polymerase chain reaction (PCR) performed throughout F8 identified a nonamplifiable region in intron 25 indicating the presence of a genomic rearrangement. F8 messanger ribonucleic acid (mRNA) analysis including 3'rapid amplification of complementary deoxyribonucleic acid (cDNA) ends and nanopore sequencing found the presence of a F8 fusion transcript in which F8 exon 26 was replaced by a 742-bp pseudoexon corresponding to a noncoding region located at the beginning of the long arm of chromosome X (Xq12; chrX: 66 310 352-66 311 093, GRCh37/hg19). Cytogenetic microarray analysis found the presence of a Xq11.1q12 gain of 3.8 Mb. The PCR amplification of junction fragments and fluorescent in situ hybridization (FISH) analysis found that the Xq11q12 duplicated region was inserted in the F8 intron 25 genomic region.

Conclusion: We characterized a novel genomic rearrangement in which a 3.8-Mb Xq11.1q12 gain inserted in the F8 intron 25 led to an aberrant fusion transcript in a patient with severe hemophilia A (HA), using comprehensive molecular techniques. This study highlights the value of single-molecule long-read sequencing technologies for molecular diagnosis of HA especially when conventional genetic approaches have failed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.14460DOI Listing
July 2019
-->