Publications by authors named "Nicola L Beer"

27 Publications

  • Page 1 of 1

Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure.

iScience 2021 Jun 19;24(6):102552. Epub 2021 May 19.

Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.

Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-β signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure . We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isci.2021.102552DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188562PMC
June 2021

Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits.

PLoS Comput Biol 2020 08 14;16(8):e1008044. Epub 2020 Aug 14.

Big Data Institute, University of Oxford, Oxford, United Kingdom.

Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R2visceral = 0.94, P < 2.2 × 10-16, R2subcutaneous = 0.91, P < 2.2 × 10-16), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that mean adipocyte area positively correlated with body mass index (BMI) (Psubq = 8.13 × 10-69, βsubq = 0.45; Pvisc = 2.5 × 10-55, βvisc = 0.49; average R2 across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (Pmeta = 9.8 × 10-7). Lastly, we performed the largest GWAS and subsequent meta-analysis of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1008044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449405PMC
August 2020

Analysis of Differentiation Protocols Defines a Common Pancreatic Progenitor Molecular Signature and Guides Refinement of Endocrine Differentiation.

Stem Cell Reports 2020 01 26;14(1):138-153. Epub 2019 Dec 26.

Stem Cell R&D, Novo Nordisk A/S, 2760 Måløv, Denmark. Electronic address:

Several distinct differentiation protocols for deriving pancreatic progenitors (PPs) from human pluripotent stem cells have been described, but it remains to be shown how similar the PPs are across protocols and how well they resemble their in vivo counterparts. Here, we evaluated three differentiation protocols, performed RNA and assay for transposase-accessible chromatin using sequencing on isolated PPs derived with these, and compared them with fetal human pancreas populations. This enabled us to define a shared transcriptional and epigenomic signature of the PPs, including several genes not previously implicated in pancreas development. Furthermore, we identified a significant and previously unappreciated cross-protocol variation of the PPs through multi-omics analysis and demonstrate how such information can be applied to refine differentiation protocols for derivation of insulin-producing beta-like cells. Together, our study highlights the importance of a detailed characterization of defined cell populations derived from distinct differentiation protocols and provides a valuable resource for exploring human pancreatic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2019.11.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962645PMC
January 2020

Loss of ZnT8 function protects against diabetes by enhanced insulin secretion.

Nat Genet 2019 11 1;51(11):1596-1606. Epub 2019 Nov 1.

Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK.

A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced K channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0513-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858874PMC
November 2019

Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells.

Nat Genet 2018 08 27;50(8):1122-1131. Epub 2018 Jul 27.

Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.

The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0173-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237273PMC
August 2018

Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling.

Development 2018 08 15;145(16). Epub 2018 Aug 15.

Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France

To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.165480DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124547PMC
August 2018

Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs.

Stem Cell Res 2018 08 26;31:16-26. Epub 2018 Jun 26.

The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel. Electronic address:

Maturity onset diabetes of the young (MODY) is a hereditary form of diabetes mellitus presenting at childhood or adolescence, which eventually leads to pancreatic β-cells dysfunction. The underlying genetic basis of MODY disorders is haploinsufficiency, where loss-of-function mutations in a single allele cause the diabetic phenotype in heterozygous patients. MODY1 is a type of MODY disorder resulting from a mutation in the transcription factor hepatocyte nuclear factor 4 alpha (HNF4α). In order to establish a human based model to study MODY1, we generated patient-derived induced pluripotent stem cells (iPSCs). Differentiation of these pluripotent cells towards the pancreatic lineage enabled to evaluate the effects of the MODY1 mutation and its impact on endodermal and pancreatic cells. Analyzing the gene expression profiles of differentiated MODY1 cells, revealed the outcome of HNF4α haploinsufficiency on its targets. This molecular analysis suggests that the differential expression of HNF4α target genes in MODY1 is affected by the number of HNF4α binding sites, their distance from the transcription start site, and the number of other transcription factor binding sites. These features may help explain the molecular manifestations of haploinsufficiency in MODY1 disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2018.06.013DOI Listing
August 2018

NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations.

Stem Cell Res 2018 05 23;29:220-231. Epub 2018 Apr 23.

Department of Stem Cell Biology, Novo Nordisk A/S, DK-2760 Måløv, Denmark. Electronic address:

Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures. Here we present the generation of human induced pluripotent stem cell (iPSC) lines with a GFP reporter inserted in the endogenous NKX6.1 locus. Characterization of the reporter lines demonstrated faithful GFP labelling of NKX6.1 expression during pancreas and motor neuron differentiation. Cell sorting and gene expression profiling by RNA sequencing revealed that NKX6.1-positive cells from pancreatic differentiations closely resemble human beta cells. Furthermore, functional characterization of the isolated cells demonstrated that glucose-stimulated insulin secretion is mainly confined to the NKX6.1-positive cells. We expect that the NKX6.1-GFP iPSC lines and the results presented here will contribute to the further refinement of differentiation protocols and characterization of hPSC-derived beta cells and motor neurons for disease modelling and cell replacement therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2018.04.010DOI Listing
May 2018

Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition.

Diabetologia 2018 07 19;61(7):1614-1622. Epub 2018 Apr 19.

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Aims/hypothesis: Most type 2 diabetes-associated genetic variants identified via genome-wide association studies (GWASs) appear to act via the pancreatic islet. Observed defects in insulin secretion could result from an impact of these variants on islet development and/or the function of mature islets. Most functional studies have focused on the latter, given limitations regarding access to human fetal islet tissue. Capitalising upon advances in in vitro differentiation, we characterised the transcriptomes of human induced pluripotent stem cell (iPSC) lines differentiated along the pancreatic endocrine lineage, and explored the contribution of altered islet development to the pathogenesis of type 2 diabetes.

Methods: We performed whole-transcriptome RNA sequencing of human iPSC lines from three independent donors, at baseline and at seven subsequent stages during in vitro islet differentiation. Differentially expressed genes (q < 0.01, log fold change [FC] > 1) were assigned to the stages at which they were most markedly upregulated. We used these data to characterise upstream transcription factors directing different stages of development, and to explore the relationship between RNA expression profiles and genes mapping to type 2 diabetes GWAS signals.

Results: We identified 9409 differentially expressed genes across all stages, including many known markers of islet development. Integration of differential expression data with information on transcription factor motifs highlighted the potential contribution of REST to islet development. Over 70% of genes mapping within type 2 diabetes-associated credible intervals showed peak differential expression during islet development, and type 2 diabetes GWAS loci of largest effect (including TCF7L2; logFC = 1.2; q = 8.5 × 10) were notably enriched in genes differentially expressed at the posterior foregut stage (q = 0.002), as calculated by gene set enrichment analyses. In a complementary analysis of enrichment, genes differentially expressed in the final, beta-like cell stage of in vitro differentiation were significantly enriched (hypergeometric test, permuted p value <0.05) for genes within the credible intervals of type 2 diabetes GWAS loci.

Conclusions/interpretation: The present study characterises RNA expression profiles during human islet differentiation, identifies potential transcriptional regulators of the differentiation process, and suggests that the inherited predisposition to type 2 diabetes is partly mediated through modulation of islet development.

Data Availability: Sequence data for this study has been deposited at the European Genome-phenome Archive (EGA), under accession number EGAS00001002721.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-018-4612-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354904PMC
July 2018

Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.

Sci Data 2017 12 19;4:170179. Epub 2017 Dec 19.

Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sdata.2017.179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735917PMC
December 2017

Genes Associated with Pancreas Development and Function Maintain Open Chromatin in iPSCs Generated from Human Pancreatic Beta Cells.

Stem Cell Reports 2017 11 1;9(5):1395-1405. Epub 2017 Nov 1.

Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Current in vitro islet differentiation protocols suffer from heterogeneity and low efficiency. Induced pluripotent stem cells (iPSCs) derived from pancreatic beta cells (BiPSCs) preferentially differentiate toward endocrine pancreas-like cells versus those from fibroblasts (FiPSCs). We interrogated genome-wide open chromatin in BiPSCs and FiPSCs via ATAC-seq and identified ∼8.3k significant, differential open chromatin sites (DOCS) between the two iPSC subtypes (false discovery rate [FDR] < 0.05). DOCS where chromatin was more accessible in BiPSCs (Bi-DOCS) were significantly enriched for known regulators of endodermal development, including bivalent and weak enhancers, and FOXA2 binding sites (FDR < 0.05). Bi-DOCS were associated with genes related to pancreas development and beta-cell function, including transcription factors mutated in monogenic diabetes (PDX1, NKX2-2, HNF1A; FDR < 0.05). Moreover, Bi-DOCS correlated with enhanced gene expression in BiPSC-derived definitive endoderm and pancreatic progenitor cells. Bi-DOCS therefore highlight genes and pathways governing islet-lineage commitment, which can be exploited for differentiation protocol optimization, diabetes disease modeling, and therapeutic purposes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2017.09.020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831005PMC
November 2017

Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network.

PLoS Comput Biol 2017 Oct 23;13(10):e1005816. Epub 2017 Oct 23.

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.

Type 2 Diabetes (T2D) constitutes a global health burden. Efforts to uncover predisposing genetic variation have been considerable, yet detailed knowledge of the underlying pathogenesis remains poor. Here, we constructed a T2D phenotypic-linkage network (T2D-PLN), by integrating diverse gene functional information that highlight genes, which when disrupted in mice, elicit similar T2D-relevant phenotypes. Sensitising the network to T2D-relevant phenotypes enabled significant functional convergence to be detected between genes implicated in monogenic or syndromic diabetes and genes lying within genomic regions associated with T2D common risk. We extended these analyses to a recent multiethnic T2D case-control exome of 12,940 individuals that found no evidence of T2D risk association for rare frequency variants outside of previously known T2D risk loci. Examining associations involving protein-truncating variants (PTV), most at low population frequencies, the T2D-PLN was able to identify a convergent set of biological pathways that were perturbed within four of five independent T2D case/control ethnic sets of 2000 to 5000 exomes each. These same pathways were found to be over-represented among both known monogenic or syndromic diabetes genes and genes within T2D-associated common risk loci. Our study demonstrates convergent biology amongst variants representing different classes of T2D genetic risk. Although convergence was observed at the pathway level, few of the contributing genes were found in common between different cohorts or variant classes, most notably between the exome variant sets which suggests that future rare variant studies may be better focusing their power onto a single population of recent common ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1005816DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667928PMC
October 2017

American Diabetes Association meeting report.

J Clin Transl Endocrinol 2016 Sep 22;5:53-54. Epub 2016 Aug 22.

Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, UK.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcte.2016.08.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644433PMC
September 2016

Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology.

F1000Res 2016 15;5. Epub 2016 Jul 15.

Oxford Centre for Diabetes Endocrinology and Metabolism, Churchill Hospital, Oxford, UK; Wellcome Trust Centre for Human Genetics, Oxford, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.

Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding 'islet regulome' for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/f1000research.8682.1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955023PMC
August 2016

The genetic architecture of type 2 diabetes.

Nature 2016 08 11;536(7614):41-47. Epub 2016 Jul 11.

Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature18642DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034897PMC
August 2016

Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model.

Islets 2016 04;8(3):83-95

f Department of Islet and Stem Cell Biology , Novo Nordisk A/S , Maaloev , Denmark.

Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors, and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment, such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2, p-value = 4.9 × 10(-5)) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1, p-value = 8.6 × 10(-5)), showed transcriptional variation consistent with their known developmental roles. However, these analyses highlighted many other genes with stage-specific expression patterns, some of which may be novel drivers or markers of islet development. For example, the leptin receptor gene, LEPR, was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5, p-value = 2.0 × 10(-12)), suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes, including INS, ABCC8, and GLP1R, and enrichment of relevant GO-terms (e.g. "insulin secretion"; odds ratio = 4.2, p-value = 1.9 × 10(-3)): however, principal component analysis indicated that in vitro-differentiated cells were more immature than adult islets. Integration of the stage-specific expression information with genetic data from T2D genome-wide association studies revealed that 46 of 82 T2D-associated loci harbor genes present in at least one developmental stage, facilitating refinement of potential effector transcripts. Together, these data show that expression profiling in an iPSC islet development model can further understanding of islet biology and T2D pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/19382014.2016.1182276DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987020PMC
April 2016

Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

Nat Genet 2015 Dec 9;47(12):1415-25. Epub 2015 Nov 9.

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.

We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3437DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666734PMC
December 2015

Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

PLoS Genet 2015 Jan 27;11(1):e1004876. Epub 2015 Jan 27.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America.

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1004876DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307976PMC
January 2015

Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

Nat Genet 2014 Apr 2;46(4):357-63. Epub 2014 Mar 2.

1] Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. [2] Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.

Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051628PMC
April 2014

Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes.

Nat Genet 2013 Nov 6;45(11):1380-5. Epub 2013 Oct 6.

1] Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [4].

Genome sequencing can identify individuals in the general population who harbor rare coding variants in genes for Mendelian disorders and who may consequently have increased disease risk. Previous studies of rare variants in phenotypically extreme individuals display ascertainment bias and may demonstrate inflated effect-size estimates. We sequenced seven genes for maturity-onset diabetes of the young (MODY) in well-phenotyped population samples (n = 4,003). We filtered rare variants according to two prediction criteria for disease-causing mutations: reported previously in MODY or satisfying stringent de novo thresholds (rare, conserved and protein damaging). Approximately 1.5% and 0.5% of randomly selected individuals from the Framingham and Jackson Heart Studies, respectively, carry variants from these two classes. However, the vast majority of carriers remain euglycemic through middle age. Accurate estimates of variant effect sizes from population-based sequencing are needed to avoid falsely predicting a substantial fraction of individuals as being at risk for MODY or other Mendelian diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2794DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051627PMC
November 2013

Insights into the pathogenicity of rare missense GCK variants from the identification and functional characterization of compound heterozygous and double mutations inherited in cis.

Diabetes Care 2012 Jul 18;35(7):1482-4. Epub 2012 May 18.

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.

Objective: To demonstrate the importance of using a combined genetic and functional approach to correctly interpret a genetic test for monogenic diabetes.

Research Design And Methods: We identified three probands with a phenotype consistent with maturity-onset diabetes of the young (MODY) subtype GCK-MODY, in whom two potential pathogenic mutations were identified: [R43H/G68D], [E248 K/I225M], or [G261R/D217N]. Allele-specific PCR and cosegregation were used to determine phase. Single and double mutations were kinetically characterized.

Results: The mutations occurred in cis (double mutants) in two probands and in trans in one proband. Functional studies of all double mutants revealed inactivating kinetics. The previously reported GCK-MODY mutations R43H and G68D were inherited from an affected father and unaffected mother, respectively. Both our functional and genetic studies support R43H as the cause of GCK-MODY and G68D as a neutral rare variant.

Conclusions: These data highlight the need for family/functional studies, even for previously reported pathogenic mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc11-2420DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379612PMC
July 2012

Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia.

PLoS One 2012 6;7(4):e34541. Epub 2012 Apr 6.

Institute of Experimental Endocrinology, Slovak Academy of Science, Bratislava, Slovakia.

Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034541PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321013PMC
September 2012

Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes.

J Clin Invest 2012 Jan 19;122(1):205-17. Epub 2011 Dec 19.

National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA.

Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI46425DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248284PMC
January 2012

Discovery of a novel site regulating glucokinase activity following characterization of a new mutation causing hyperinsulinemic hypoglycemia in humans.

J Biol Chem 2011 May 29;286(21):19118-26. Epub 2011 Mar 29.

Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom.

Type 2 diabetes is a global problem, and current ineffective therapeutic strategies pave the way for novel treatments like small molecular activators targeting glucokinase (GCK). GCK activity is fundamental to beta cell and hepatocyte glucose metabolism, and heterozygous activating and inactivating GCK mutations cause hyperinsulinemic hypoglycemia (HH) and maturity onset diabetes of the young (MODY) respectively. Over 600 naturally occurring inactivating mutations have been reported, whereas only 13 activating mutations are documented to date. We report two novel GCK HH mutations (V389L and T103S) at residues where MODY mutations also occur (V389D and T103I). Using recombinant proteins with in vitro assays, we demonstrated that both HH mutants had a greater relative activity index than wild type (6.0 for V389L, 8.4 for T103S, and 1.0 for wild type). This was driven by an increased affinity for glucose (S(0.5), 3.3 ± 0.1 and 3.5 ± 0.1 mm, respectively) versus wild type (7.5 ± 0.1 mm). Correspondingly, the V389D and T103I MODY mutants had markedly reduced relative activity indexes (<0.1). T103I had an altered affinity for glucose (S(0.5), 24.9 ± 0.6 mm), whereas V389D also exhibited a reduced affinity for ATP and decreased catalysis rate (S(0.5), 78.6 ± 4.5 mm; ATP(K(m)), 1.5 ± 0.1 mm; K(cat), 10.3 ± 1.1s(-1)) compared with wild type (ATP(K(m)), 0.4 ± <0.1; K(cat), 62.9 ± 1.2). Both Thr-103 mutants showed reduced inhibition by the endogenous hepatic inhibitor glucokinase regulatory protein. Molecular modeling demonstrated that Thr-103 maps to the allosteric activator site, whereas Val-389 is located remotely to this position and all other previously reported activating mutations, highlighting α-helix 11 as a novel region regulating GCK activity. Our data suggest that pharmacological manipulation of GCK activity at locations distal from the allosteric activator site is possible.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111.223362DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099725PMC
May 2011

Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia.

Hum Mutat 2009 Nov;30(11):1512-26

Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom.

Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.21110DOI Listing
November 2009

The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver.

Hum Mol Genet 2009 Nov 30;18(21):4081-8. Epub 2009 Jul 30.

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK.

Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR). Fructose-6 and fructose-1 phosphate (F6P and F1P) enhance or reduce GKRP-mediated inhibition, respectively. A common GCKR variant (P446L) is reproducibly associated with triglyceride and fasting plasma glucose levels in the general population. The aim of this study was to determine the mutational mechanism responsible for this genetic association. Recombinant human GCK and both human wild-type (WT) and P446L-GKRP proteins were generated. GCK kinetic activity was observed spectrophotometrically using an NADP(+)-coupled assay. WT and P446L-GKRP-mediated inhibition of GCK activity and subsequent regulation by phosphate esters were determined. Assays matched for GKRP activity demonstrated no difference in dose-dependent inhibition of GCK activity or F1P-mediated regulation. However, the response to physiologically relevant F6P levels was significantly attenuated with P446L-GKRP (n = 18; P
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddp357DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758140PMC
November 2009
-->