Publications by authors named "Nicholas Selner"

5 Publications

  • Page 1 of 1

Two Distinct E2F Transcriptional Modules Drive Cell Cycles and Differentiation.

Cell Rep 2019 06 23;27(12):3547-3560.e5. Epub 2019 May 23.

Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:

Orchestrating cell-cycle-dependent mRNA oscillations is critical to cell proliferation in multicellular organisms. Even though our understanding of cell-cycle-regulated transcription has improved significantly over the last three decades, the mechanisms remain untested in vivo. Unbiased transcriptomic profiling of G, G-S, and S-G-M sorted cells from FUCCI mouse embryos suggested a central role for E2Fs in the control of cell-cycle-dependent gene expression. The analysis of gene expression and E2F-tagged knockin mice with tissue imaging and deep-learning tools suggested that post-transcriptional mechanisms universally coordinate the nuclear accumulation of E2F activators (E2F3A) and canonical (E2F4) and atypical (E2F8) repressors during the cell cycle in vivo. In summary, we mapped the spatiotemporal expression of sentinel E2F activators and canonical and atypical repressors at the single-cell level in vivo and propose that two distinct E2F modules relay the control of gene expression in cells actively cycling (E2F3A-8-4) and exiting the cycle (E2F3A-4) during mammalian development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.05.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673649PMC
June 2019

Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides.

Angew Chem Int Ed Engl 2015 Jun 7;54(26):7602-6. Epub 2015 May 7.

Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 (USA).

Ras genes are frequently activated in human cancers, but the mutant Ras proteins remain largely "undruggable" through the conventional small-molecule approach owing to the absence of any obvious binding pockets on their surfaces. By screening a combinatorial peptide library, followed by structure-activity relationship (SAR) analysis, we discovered a family of cyclic peptides possessing both Ras-binding and cell-penetrating properties. These cell-permeable cyclic peptides inhibit Ras signaling by binding to Ras-GTP and blocking its interaction with downstream proteins and they induce apoptosis of cancer cells. Our results demonstrate the feasibility of developing cyclic peptides for the inhibition of intracellular protein-protein interactions and of direct Ras inhibitors as a novel class of anticancer agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201502763DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591930PMC
June 2015

Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery.

Biochemistry 2014 Jun 11;53(24):4034-46. Epub 2014 Jun 11.

Department of Chemistry and Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States.

Cyclic heptapeptide cyclo(FΦRRRRQ) (cFΦR4, where Φ is l-2-naphthylalanine) was recently found to be efficiently internalized by mammalian cells. In this study, its mechanism of internalization was investigated by perturbing various endocytic events through the introduction of pharmacologic agents and genetic mutations. The results show that cFΦR4 binds directly to membrane phospholipids, is internalized into human cancer cells through endocytosis, and escapes from early endosomes into the cytoplasm. Its cargo capacity was examined with a wide variety of molecules, including small-molecule dyes, linear and cyclic peptides of various charged states, and proteins. Depending on the nature of the cargos, they may be delivered by endocyclic (insertion of cargo into the cFΦR4 ring), exocyclic (attachment of cargo to the Gln side chain), or bicyclic approaches (fusion of cFΦR4 and cyclic cargo rings). The overall delivery efficiency (i.e., delivery of cargo into the cytoplasm and nucleus) of cFΦR4 was 4-12-fold higher than those of nonaarginine, HIV Tat-derived peptide, or penetratin. The higher delivery efficiency, coupled with superior serum stability, minimal toxicity, and synthetic accessibility, renders cFΦR4 a useful transporter for intracellular cargo delivery and a suitable system for investigating the mechanism of endosomal escape.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi5004102DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075989PMC
June 2014

Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases.

Biochemistry 2014 Jan 7;53(2):397-412. Epub 2014 Jan 7.

Department of Chemistry and Biochemistry, The Ohio State University , 484 West 12th Avenue, Columbus, Ohio 43210, United States.

The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi401223rDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954597PMC
January 2014

Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2.

Biochemistry 2011 Mar 18;50(12):2339-56. Epub 2011 Feb 18.

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States.

We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi1014453DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074353PMC
March 2011