Publications by authors named "Nicholas Moehringer"

6 Publications

  • Page 1 of 1

Exploration of Rapid Automatized Naming and Standard Visual Tests in Prodromal Alzheimer Disease Detection.

J Neuroophthalmol 2021 May 17. Epub 2021 May 17.

Departments of Neurology (SZW, RNK, NM, LH, BJ, AC, JCR, SLG, TMW, AVM, and LJB), Population Health (RNK and LJB), and Ophthalmology (SZW, JCR, SLG, and LJB), New York University Grossman School of Medicine, New York, New York.

Background: Visual tests in Alzheimer disease (AD) have been examined over the last several decades to identify a sensitive and noninvasive marker of the disease. Rapid automatized naming (RAN) tasks have shown promise for detecting prodromal AD or mild cognitive impairment (MCI). The purpose of this investigation was to determine the capacity for new rapid image and number naming tests and other measures of visual pathway structure and function to distinguish individuals with MCI due to AD from those with normal aging and cognition. The relation of these tests to vision-specific quality of life scores was also examined in this pilot study.

Methods: Participants with MCI due to AD and controls from well-characterized NYU research and clinical cohorts performed high and low-contrast letter acuity (LCLA) testing, as well as RAN using the Mobile Universal Lexicon Evaluation System (MULES) and Staggered Uneven Number test, and vision-specific quality of life scales, including the 25-Item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and 10-Item Neuro-Ophthalmic Supplement. Individuals also underwent optical coherence tomography scans to assess peripapillary retinal nerve fiber layer and ganglion cell/inner plexiform layer thicknesses. Hippocampal atrophy on brain MRI was also determined from the participants' Alzheimer disease research center or clinical data.

Results: Participants with MCI (n = 14) had worse binocular LCLA at 1.25% contrast compared with controls (P = 0.009) and longer (worse) MULES test times (P = 0.006) with more errors in naming images (P = 0.009) compared with controls (n = 16). These were the only significantly different visual tests between groups. MULES test times (area under the receiver operating characteristic curve [AUC] = 0.79), MULES errors (AUC = 0.78), and binocular 1.25% LCLA (AUC = 0.78) showed good diagnostic accuracy for distinguishing MCI from controls. A combination of the MULES score and 1.25% LCLA demonstrated the greatest capacity to distinguish (AUC = 0.87). These visual measures were better predictors of MCI vs control status than the presence of hippocampal atrophy on brain MRI in this cohort. A greater number of MULES test errors (rs = -0.50, P = 0.005) and worse 1.25% LCLA scores (rs = 0.39, P = 0.03) were associated with lower (worse) NEI-VFQ-25 scores.

Conclusions: Rapid image naming (MULES) and LCLA are able to distinguish MCI due to AD from normal aging and reflect vision-specific quality of life. Larger studies will determine how these easily administered tests may identify patients at risk for AD and serve as measures in disease-modifying therapy clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNO.0000000000001228DOI Listing
May 2021

The SUN test of vision: Investigation in healthy volunteers and comparison to the mobile universal lexicon evaluation system (MULES).

J Neurol Sci 2020 08 30;415:116953. Epub 2020 May 30.

Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA. Electronic address:

Objective: Tests of rapid automatized naming (RAN) have been used for decades to evaluate neurological conditions. RAN tests require extensive brain pathways involving visual perception, memory, eye movements and language. To the extent that different naming tasks capture varied visual pathways and related networks, we developed the Staggered Uneven Number (SUN) test of rapid number naming to complement existing RAN tests, such as the Mobile Universal Lexicon Evaluation System (MULES). The purpose of this investigation was to determine values for time scores for SUN, and to compare test characteristics between SUN and MULES.

Methods: We administered the SUN and MULES tests to healthy adult volunteers in a research office setting. MULES consists of 54 color photographs; the SUN includes 145 single- and multi-digit numbers. Participants are asked to name each number or picture aloud.

Results: Among 54 healthy participants, aged 33 ± 13 years (range 20-66), the average SUN time score was 45.2 ± 8.3 s (range 30-66). MULES test times were 37.4 ± 9.9 s (range 20-68). SUN and MULES time scores did not differ by gender, but were greater (worse) among older participants for MULES (r = 0.43, P = .001). Learning effects between first and second trials were greater for the MULES; participants improved (reduced) their time scores between trials by 5% on SUN and 16% for MULES (P < .0001, Wilcoxon signed-rank test).

Conclusion: The SUN is a new vision-based test that complements presently available picture- and number-based RAN tests. These assessments may require different brain pathways and networks for visual processing, visual memory, language and eye movements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2020.116953DOI Listing
August 2020

Rapid picture naming in Parkinson's disease using the Mobile Universal Lexicon Evaluation System (MULES).

J Neurol Sci 2020 Mar 9;410:116680. Epub 2020 Jan 9.

Departments of Neurology, New York University School of Medicine, New York, NY, USA; Departments of Population Health, New York University School of Medicine, New York, NY, USA; Departments of Ophthalmology, New York University School of Medicine, New York, NY, USA. Electronic address:

Objective: The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming that captures extensive brain networks, including cognitive, language and afferent/efferent visual pathways. MULES performance is slower in concussion and multiple sclerosis, conditions in which vision dysfunction is common. Visual aspects captured by the MULES may be impaired in Parkinson's disease (PD) including color discrimination, object recognition, visual processing speed, and convergence. The purpose of this study was to compare MULES time scores for a cohort of PD patients with those for a control group of participants of similar age. We also sought to examine learning effects for the MULES by comparing scores for two consecutive trials within the patient and control groups.

Methods: MULES consists of 54 colored pictures (fruits, animals, random objects). The test was administered in a cohort of PD patients and in a group of similar aged controls. Wilcoxon rank-sum tests were used to determine statistical significance for differences in MULES time scores between PD patients and controls. Spearman rank-correlation coefficients were calculated to examine the relation between MULES time scores and PD motor symptom severity (UPDRS). Learning effects were assessed using Wilcoxon rank-sum tests.

Results: Among 51 patients with PD (median age 70 years, range 52-82) and 20 disease-free control participants (median age 67 years, range 51-90), MULES scores were significantly slower (worse performance) in PD patients (median 63.2 s, range 37.3-296.3) vs. controls (median 53.9 s, range 37.5-128.6, P = .03, Wilcoxon rank-sum test). Slower MULES times were associated with increased motor symptom severity as measured by the Unified Parkinson's Disease Rating Scale, Section III (r = 0.37, P = .02). Learning effects were greater among patients with PD (median improvement of 14.8 s between two MULES trials) compared to controls (median 7.4 s, P = .004).

Conclusion: The MULES is a complex test of rapid picture naming that captures numerous brain pathways including an extensive visual network. MULES performance is slower in patients with PD and our study suggests an association with the degree of motor impairment. Future studies will determine the relation of MULES time scores to other modalities that test visual function and structure in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2020.116680DOI Listing
March 2020

Rapid sideline performance meets outpatient clinic: Results from a multidisciplinary concussion center registry.

J Neurol Sci 2017 Aug 24;379:312-317. Epub 2017 Jun 24.

Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University School of Medicine, New York, NY, USA. Electronic address:

Objective: This study investigated the utility of sideline concussion tests, including components of the Sports Concussion Assessment Tool, 3rd Edition (SCAT3) and the King-Devick (K-D), a vision-based test of rapid number naming, in an outpatient, multidisciplinary concussion center treating patients with both sports-related and non-sports related concussions. The ability of these tests to predict clinical outcomes based on the scores at the initial visit was evaluated.

Methods: Scores for components of the SCAT3 and the K-D were fit into regression models accounting for age, gender, and sport/non-sport etiology in order to predict clinical outcome measures including total number of visits to the concussion center, whether the patient reached a SCAT3 symptom severity score≤7, and the total types of referrals each patient received over their course. Patient characteristics, differences between those with sport and non-sport etiologies, and correlations between the tests were also analyzed.

Results: Among 426 patients with concussion, SCAT3 total symptom score and symptom severity score at the initial visit predicted each of the clinical outcome variables. K-D score at the initial visit predicted the total number of visits and the total number of referrals. Those with sports-related concussions were younger, had less severely-affected test scores, had fewer visits and types of referrals, and were more likely to have clinical resolution of their concussion and to reach a symptom severity score≤7.

Conclusions: This large-scale study of concussion patients supports the use of sideline concussion tests as part of outpatient concussion assessment, especially the total symptom and symptom severity score portions of the SCAT3 and the K-D. Women in this cohort had higher total symptom and symptom severity scores compared to men. Our data also suggest that those with non-sports-related concussions have longer lasting symptoms than those with sports-related concussions, and that these two groups should perhaps be regarded separately when assessing outcomes and needs in a multidisciplinary setting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2017.06.038DOI Listing
August 2017

Gender and age predict outcomes of cognitive, balance and vision testing in a multidisciplinary concussion center.

J Neurol Sci 2015 27;353(1-2):111-5. Epub 2015 Apr 27.

Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University School of Medicine, New York, NY, USA. Electronic address:

Objective: This study examined components of the Sports Concussion Assessment Tool, 3rd Edition (SCAT3) and a vision-based test of rapid number naming (King-Devick [K-D]) to evaluate sports and non-sports concussion patients in an outpatient, multidisciplinary concussion center. While the Symptom Evaluation, Standardized Assessment of Concussion (SAC), modified Balance Error Scoring System (BESS), and K-D are used typically for sideline assessment, their use in an outpatient clinical setting following concussion has not been widely investigated.

Methods: K-D, BESS, SAC, and SCAT3 Symptom Evaluation scores were analyzed for 206 patients who received concussion care at the Concussion Center at NYU Langone Medical Center. Patient age, gender, referral data, mechanism of injury, time between concussive event and first concussion center appointment, and the first specialty service to evaluate each patient were also analyzed.

Results: In this cohort, Symptom Evaluation scores showed a higher severity and a greater number of symptoms to be associated with older age (r = 0.31, P = 0.002), female gender (P = 0.002, t-test), and longer time between the concussion event and first appointment at the concussion center (r = 0.34, P = 0.008). Performance measures of K-D and BESS also showed associations of worse scores with increasing patient age (r = 0.32-0.54, P ≤ 0.001), but were similar among males and females and across the spectrum of duration since the concussion event. Patients with greater Symptom Severity Scores also had the greatest numbers of referrals to specialty services in the concussion center (r = 0.33, P = 0.0008). Worse Immediate Memory scores on SAC testing correlated with slower K-D times, potentially implicating the dorsolateral prefrontal cortex as a commonly involved brain structure.

Conclusion: This study demonstrates a novel use of sideline concussion assessment tools for evaluation in the outpatient setting, and implicates age and gender as predictors of outcomes for these tests.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2015.04.029DOI Listing
February 2016

Adding Vision to Concussion Testing: A Prospective Study of Sideline Testing in Youth and Collegiate Athletes.

J Neuroophthalmol 2015 Sep;35(3):235-41

Departments of Neurology (JM, NM, BM, LH, SLG, LJB), Population Health (LJB), Ophthalmology (SLG, LJB) and Sports Medicine/Orthopaedic Surgery (DAC), New York University School of Medicine, New York, New York; Department of Athletics (NW), New York University, New York, New York; Department of Athletics (CC), Long Island University, Brooklyn, New York; Departments of Emergency Medicine and Pediatrics (AS), Cohen Children's Medical Center of New York, Hofstra North Shore LIJ School of Medicine; and Departments of Neurology (KMG, SLG, LJB) and Epidemiology (LJB), University of Pennsylvania, Philadelphia, Pennsylvania.

Background: Sports-related concussion commonly affects the visual pathways. Current sideline protocols test cognition and balance but do not include assessments of visual performance. We investigated how adding a vision-based test of rapid number naming could increase our ability to identify concussed athletes on the sideline at youth and collegiate levels.

Methods: Participants in this prospective study included members of a youth ice hockey and lacrosse league and collegiate athletes from New York University and Long Island University. Athletes underwent preseason baseline assessments using: 1) the King-Devick (K-D) test, a <2-minute visual performance measure of rapid number naming, 2) the Standardized Assessment of Concussion (SAC), a test of cognition, and 3) a timed tandem gait test of balance. The SAC and timed tandem gait are components of the currently used Sport Concussion Assessment Tool, 3rd Edition (SCAT3 and Child-SCAT3). In the event of a concussion during the athletic season, injured athletes were retested on the sideline/rink-side. Nonconcussed athletes were also assessed as control participants under the same testing conditions.

Results: Among 243 youth (mean age 11 ± 3 years, range 5-17) and 89 collegiate athletes (age 20 ± 1 years, range 18-23), baseline time scores for the K-D test were lower (better) with increasing participant age (P < 0.001, linear regression models). Among 12 athletes who sustained concussions during their athletic season, K-D scores worsened from baseline by an average of 5.2 seconds; improvement by 6.4 seconds was noted for the nonconcussed controls (n = 14). The vision-based K-D test showed the greatest capacity to distinguish concussed vs control athletes based on changes from preseason baseline to postinjury (receiver operating characteristic [ROC] curve areas from logistic regression models, accounting for age = 0.92 for K-D, 0.87 for timed tandem gait, and 0.68 for SAC; P = 0.0004 for comparison of ROC curve areas).

Conclusions: Adding a vision-based performance measure to cognitive and balance testing enhances the detection capabilities of current sideline concussion assessment. This observation in patients with mild traumatic brain injury reflects the common involvement and widespread distribution of brain pathways dedicated to vision.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNO.0000000000000226DOI Listing
September 2015