Publications by authors named "Nicholas K Hayward"

240 Publications

Novel MAPK/AKT-impairing germline NRAS variant identified in a melanoma-prone family.

Fam Cancer 2021 Jul 3. Epub 2021 Jul 3.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, EPS 7106, Bethesda, MD, 20892, USA.

While several high-penetrance melanoma risk genes are known, variation in these genes fail to explain melanoma susceptibility in a large proportion of high-risk families. As part of a melanoma family sequencing study, including 435 families from Mediterranean populations we identified a novel NRAS variant (c.170A > C, p.D57A) in an Italian melanoma-prone family. This variant is absent in exomes in gnomAD, ESP, UKBiobank, and the 1000 Genomes Project, as well as in 11,273 Mediterranean individuals and 109 melanoma-prone families from the US and Australia. This variant occurs in the GTP-binding pocket of NRAS. Differently from other RAS activating alterations, NRAS D57A expression is unable to activate MAPK-pathway both constitutively and after stimulation but enhances EGF-induced PI3K-pathway signaling in serum starved conditions in vitro. Consistent with in vitro data demonstrating that NRAS D57A does not enrich GTP binding, molecular modeling suggests that the D57A substitution would be expected to impair Mg2 + binding and decrease nucleotide-binding and GTPase activity of NRAS. While we cannot firmly establish NRAS c.170A > C (p.D57A) as a melanoma susceptibility variant, further investigation of NRAS as a familial melanoma gene is warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10689-021-00267-9DOI Listing
July 2021

Evaluation of Crizotinib Treatment in a Patient With Unresectable GOPC-ROS1 Fusion Agminated Spitz Nevi.

JAMA Dermatol 2021 Jul;157(7):836-841

Peter MacCallum Cancer Centre, Melbourne, Australia.

Importance: Spitz nevi are benign melanocytic neoplasms that classically present in childhood. Isolated Spitz nevi have been associated with oncogenic gene fusions in approximately 50% of cases. The rare agminated variant of Spitz nevi, thought to arise from cutaneous genetic mosaicism, is characterized by development of clusters of multiple lesions in a segmental distribution, which can complicate surgical removal. Somatic single-nucleotide variants in the HRAS oncogene have been described in agminated Spitz nevi, most of which were associated with an underlying nevus spilus. The use of targeted medical therapy for agminated Spitz nevi is not well understood.

Observations: A girl aged 30 months presented with facial agminated Spitz nevi that recurred rapidly and extensively after surgery. Owing to the morbidity of further surgery, referral was made to a molecular tumor board. The patient's archival nevus tissue was submitted for extended immunohistochemical analysis and genetic sequencing. Strong ROS1 protein expression was identified by immunohistochemistry. Consistent with this, analysis of whole-genome sequencing data revealed GOPC-ROS1 fusions. These results indicated likely benefit from the oral tyrosine kinase inhibitor crizotinib, which was administered at a dosage of 280 mg/m2 twice daily. An excellent response was observed in all lesions within 5 weeks, with complete flattening after 20 weeks.

Conclusions And Relevance: Given the response following crizotinib treatment observed in this case, the kinase fusion was believed to be functionally consequential in the patient's agminated Spitz nevi and likely the driver mutational event for growth of her nevi. The repurposing of crizotinib for GOPC-ROS1 Spitz nevi defines a new treatment option for these lesions, particularly in cases for which surgery is relatively contraindicated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamadermatol.2021.0025DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173474PMC
July 2021

Meta-Analysis and Systematic Review of the Genomics of Mucosal Melanoma.

Mol Cancer Res 2021 06 11;19(6):991-1004. Epub 2021 Mar 11.

QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Mucosal melanoma is a rare subtype of melanoma. To date, there has been no comprehensive systematic collation and statistical analysis of the aberrations and aggregated frequency of driver events across multiple studies. Published studies using whole genome, whole exome, targeted gene panel, or individual gene sequencing were identified. Datasets from these studies were collated to summarize mutations, structural variants, and regions of copy-number alteration. Studies using next-generation sequencing were divided into the "main" cohort ( = 173; fresh-frozen samples), "validation" cohort ( = 48; formalin-fixed, paraffin-embedded samples) and a second "validation" cohort comprised 104 tumors sequenced using a targeted panel. Studies assessing mutations in , and were summarized to assess hotspot mutations. Statistical analysis of the main cohort variant data revealed , and as significantly mutated genes. and mutations occurred more commonly in lower anatomy melanomas and in the upper anatomy. , and were commonly affected by chromosomal copy loss, while , and were commonly amplified. Further notable genomic alterations occurring at lower frequencies indicated commonality of signaling networks in tumorigenesis, including MAPK, PI3K, Notch, Wnt/β-catenin, cell cycle, DNA repair, and telomere maintenance pathways. This analysis identified genomic aberrations that provide some insight to the way in which specific pathways may be disrupted. IMPLICATIONS: Our analysis has shown that mucosal melanomas have a diverse range of genomic alterations in several biological pathways. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/6/991/F1.large.jpg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-20-0839DOI Listing
June 2021

G9a Inhibition Enhances Checkpoint Inhibitor Blockade Response in Melanoma.

Clin Cancer Res 2021 May 15;27(9):2624-2635. Epub 2021 Feb 15.

QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

Purpose: G9a histone methyltransferase exerts oncogenic effects in several tumor types and its inhibition promotes anticancer effects. However, the impact on checkpoint inhibitor blockade response and the utility of G9a or its target genes as a biomarker is poorly studied. We aimed to examine whether G9a inhibition can augment the efficacy of checkpoint inhibitor blockade and whether , a G9a target gene, can predict treatment response.

Experimental Design: Clinical potential of LC3B as a biomarker of checkpoint inhibitor blockade was assessed using patient samples including tumor biopsies and circulating tumor cells from liquid biopsies. Efficacy of G9a inhibition to enhance checkpoint inhibitor blockade was examined using a mouse model.

Results: Patients with melanoma who responded to checkpoint inhibitor blockade were associated with not only a higher level of tumor LC3B but also a higher proportion of cells expressing LC3B. A higher expression of or LC3B protein was associated with longer survival and lower incidence of acquired resistance to checkpoint inhibitor blockade, suggesting LC3B as a potential predictive biomarker. We demonstrate that G9a histone methyltransferase inhibition is able to not only robustly induce LC3B level to augment the efficacy of checkpoint inhibitor blockade, but also induces melanoma cell death.

Conclusions: Checkpoint inhibitor blockade response is limited to a subset of the patient population. These results have implications for the development of LC3B as a predictive biomarker of checkpoint inhibitor blockade to guide patient selection, as well as G9a inhibition as a strategy to extend the proportion of patients responding to immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-20-3463DOI Listing
May 2021

Microsimulation Model for Evaluating the Cost-Effectiveness of Surveillance in Pathogenic Variant Carriers.

JCO Clin Cancer Inform 2021 01;5:143-154

QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Purpose: Pathogenic germline variants cause a tumor-predisposition syndrome (-TPDS) linked to uveal melanoma, mesothelioma, cutaneous melanoma, and renal cell carcinoma. Surveillance of carriers of pathogenic variants provides an opportunity for early tumor detection; however, there are no evidence-based guidelines for management of -TPDS, nor health economic evaluation; this study aims to provide this evidence.

Methods: We created a Markov microsimulation health state transition model of germline carriers to predict if active surveillance for the four main tumors influences survival and improves associated economic costs with a time horizon of 100 years from the perspective of the healthcare system (N = 10,000). Model inputs were derived from data published by the BAP1 Interest Group Consortium and other studies. Management and healthcare costs were extracted from Australian costing schedules (final figures converted to US dollars [USD]), and outcomes compared for individuals receiving surveillance with those in a nonsurveillance arm. Robustness was evaluated on 10,000 iterations of a 100-sample random sampling of the model output.

Results: On average, surveillance of carriers increased survival by 4.9 years at an additional cost of $6,197 USD for the healthcare system including surveillance costs ($1,265 USD per life year gained). The nonsurveillance arm had more diagnosed late tumors (62.8% 10.7%) and a higher rate of -related deaths (50.2% 35.4%; a 29.5% increase). The model was cost-effective under all sensitivity analyses. Our secondary robustness analysis estimated that 99.86% of 100-sample iterations were cost-effective and 19.67% of these were cost-saving.

Conclusion: It is recommended that carriers of germline variants are identified and undertake active surveillance, as this model suggests that this could improve survival and be cost-effective for the healthcare system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/CCI.20.00124DOI Listing
January 2021

Germline variants are associated with increased primary melanoma tumor thickness at diagnosis.

Hum Mol Genet 2021 01;29(21):3578-3587

Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia.

Germline genetic variants have been identified, which predispose individuals and families to develop melanoma. Tumor thickness is the strongest predictor of outcome for clinically localized primary melanoma patients. We sought to determine whether there is a heritable genetic contribution to variation in tumor thickness. If confirmed, this will justify the search for specific genetic variants influencing tumor thickness. To address this, we estimated the proportion of variation in tumor thickness attributable to genome-wide genetic variation (variant-based heritability) using unrelated patients with measured primary cutaneous melanoma thickness. As a secondary analysis, we conducted a genome-wide association study (GWAS) of tumor thickness. The analyses utilized 10 604 individuals with primary cutaneous melanoma drawn from nine GWAS datasets from eight cohorts recruited from the general population, primary care and melanoma treatment centers. Following quality control and filtering to unrelated individuals with study phenotypes, 8125 patients were used in the primary analysis to test whether tumor thickness is heritable. An expanded set of 8505 individuals (47.6% female) were analyzed for the secondary GWAS meta-analysis. Analyses were adjusted for participant age, sex, cohort and ancestry. We found that 26.6% (SE 11.9%, P = 0.0128) of variation in tumor thickness is attributable to genome-wide genetic variation. While requiring replication, a chromosome 11 locus was associated (P < 5 × 10-8) with tumor thickness. Our work indicates that sufficiently large datasets will enable the discovery of genetic variants associated with greater tumor thickness, and this will lead to the identification of host biological processes influencing melanoma growth and invasion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddaa222DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788289PMC
January 2021

The Prognostic Impact of Circulating Tumour DNA in Melanoma Patients Treated with Systemic Therapies-Beyond Mutant Detection.

Cancers (Basel) 2020 Dec 16;12(12). Epub 2020 Dec 16.

School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia.

In this study, we evaluated the predictive value of circulating tumour DNA (ctDNA) to inform therapeutic outcomes in metastatic melanoma patients receiving systemic therapies. We analysed 142 plasma samples from metastatic melanoma patients prior to commencement of systemic therapy: 70 were treated with BRAF/MEK inhibitors and 72 with immunotherapies. Patient-specific droplet digital polymerase chain reaction assays were designed for ctDNA detection. Plasma ctDNA was detected in 56% of patients prior to first-line anti-PD1 and/or anti-CTLA-4 treatment. The detection rate in the immunotherapy cohort was comparably lower than those with BRAF inhibitors (76%, = 0.0149). Decreasing ctDNA levels within 12 weeks of treatment was strongly concordant with treatment response (Cohen's k = 0.798, < 0.001) and predictive of longer progression free survival. Notably, a slower kinetic of ctDNA decline was observed in patients treated with immunotherapy compared to those on BRAF/MEK inhibitors. Whole exome sequencing of ctDNA was also conducted in 9 patients commencing anti-PD-1 therapy to derive tumour mutational burden (TMB) and neoepitope load measurements. The results showed a trend of high TMB and neoepitope load in responders compared to non-responders. Overall, our data suggest that changes in ctDNA can serve as an early indicator of outcomes in metastatic melanoma patients treated with systemic therapies and therefore may serve as a tool to guide treatment decisions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12123793DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765660PMC
December 2020

Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity.

Nat Commun 2020 10 16;11(1):5259. Epub 2020 Oct 16.

Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado, USA.

To increase understanding of the genomic landscape of acral melanoma, a rare form of melanoma occurring on palms, soles or nail beds, whole genome sequencing of 87 tumors with matching transcriptome sequencing for 63 tumors was performed. Here we report that mutational signature analysis reveals a subset of tumors, mostly subungual, with an ultraviolet radiation signature. Significantly mutated genes are BRAF, NRAS, NF1, NOTCH2, PTEN and TYRP1. Mutations and amplification of KIT are also common. Structural rearrangement and copy number signatures show that whole genome duplication, aneuploidy and complex rearrangements are common. Complex rearrangements occur recurrently and are associated with amplification of TERT, CDK4, MDM2, CCND1, PAK1 and GAB2, indicating potential therapeutic options.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18988-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567804PMC
October 2020

FRAMe: Familial Risk Assessment of Melanoma-a risk prediction tool to guide CDKN2A germline mutation testing in Australian familial melanoma.

Fam Cancer 2021 07 29;20(3):231-239. Epub 2020 Sep 29.

Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, 2145, Australia.

Germline mutations in CDKN2A greatly increase risk of developing cutaneous melanoma. We have constructed a risk prediction model, Familial Risk Assessment of Melanoma (FRAMe), for estimating the likelihood of carrying a heritable CDKN2A mutation among Australian families, where the prevalence of these mutations is low. Using logistic regression, we analysed characteristics of 299 Australian families recruited through the Sydney site of GenoMEL (international melanoma genetics consortium) with at least three cases of cutaneous melanoma (in situ and invasive) among first-degree blood relatives, for predictors of the presence of a pathogenic CDKN2A mutation. The final multivariable prediction model was externally validated in an independent cohort of 61 melanoma kindreds recruited through GenoMEL Queensland. Family variables independently associated with the presence of a CDKN2A mutation in a multivariable model were number of individuals diagnosed with melanoma under 40 years of age, number of individuals diagnosed with more than one primary melanoma, and number of individuals blood related to a melanoma case in the first degree diagnosed with any cancer excluding melanoma and non-melanoma skin cancer. The number of individuals diagnosed with pancreatic cancer was not independently associated with mutation status. The risk prediction model had an area under the receiver operating characteristic curve (AUC) of 0.851 (95% CI 0.793, 0.909) in the training dataset, and 0.745 (95%CI 0.612, 0.877) in the validation dataset. This model is the first to be developed and validated using only Australian data, which is important given the higher rate of melanoma in the population. This model will help to effectively identify families suitable for genetic counselling and testing in areas of high ambient ultraviolet radiation. A user-friendly electronic nomogram is available at www.melanomarisk.org.au .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10689-020-00209-xDOI Listing
July 2021

Tumor Mutation Burden and Structural Chromosomal Aberrations Are Not Associated with T-cell Density or Patient Survival in Acral, Mucosal, and Cutaneous Melanomas.

Cancer Immunol Res 2020 11 11;8(11):1346-1353. Epub 2020 Sep 11.

Melanoma Institute Australia, The University of Sydney, North Sydney, New South Wales, Australia.

Tumor mutation burden (TMB) has been proposed as a key determinant of immunogenicity in several cancers, including melanoma. The evidence presented thus far, however, is often contradictory and based mostly on RNA-sequencing data for the quantification of immune cell phenotypes. Few studies have investigated TMB across acral, mucosal, and cutaneous melanoma subtypes, which are known to have different TMB. It is also unknown whether chromosomal structural mutations [structural variant (SV) mutations] contribute to the immunogenicity in acral and mucosal melanomas where such aberrations are common. We stained 151 cutaneous and 35 acral and mucosal melanoma patient samples using quantitative IHC and correlated immune infiltrate phenotypes with TMB and other genomic profiles. TMB and SVs did not correlate with the densities of CD8 lymphocytes, CD103 tumor-resident T cells (Trm), CD45RO cells, and other innate and adaptive immune cell subsets in cutaneous and acral/mucosal melanoma tumors, respectively, including in analyses restricted to the site of disease and in a validation cohort. In 43 patients with stage III treatment-naïve cutaneous melanoma, we found that the density of immune cells, particularly Trm, was significantly associated with patient survival, but not with TMB. Overall, TMB and chromosomal structural aberrations are not associated with protective antitumor immunity in treatment-naïve melanoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-19-0835DOI Listing
November 2020

Loss-of-function variants in predispose to uveal melanoma.

J Med Genet 2021 04 9;58(4):234-236. Epub 2020 Sep 9.

Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107098DOI Listing
April 2021

Genomic analysis of adult case of ocular surface giant congenital melanocytic nevus and associated clinicopathological findings.

Ophthalmic Genet 2020 12 20;41(6):616-620. Epub 2020 Aug 20.

Department of Oncogenomics , QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia.

Introduction: Conjunctival nevi are the most common tumor of the ocular surface. There are some rare reports of so-called 'giant' conjunctival nevi. We report a case of a 47-year-old female with a cutaneous and ocular surface giant congenital melanocytic nevus and describe her clinical course.

Case Description: This is a retrospective case report of a single patient. A 47-year-old female with a history of biopsy-proven periorbital congenital melanocytic nevus, with an associated giant conjunctival nevus presented for structural and functional rehabilitation. Serial surgeries were performed and excised tissue was sent for histopathological and genetic examination. The conjunctival nevus had a low tumor mutation burden, and of the 647 somatic mutations, only one occurred within a protein coding region, namely p.Gln61Arg.

Conclusion: This is the first reported adult case including genomic analysis of an ocular surface giant congenital melanocytic nevus. The case shows a possible association between periorbital congenital melanocytic nevi and giant conjunctival nevi, and underscores the possible role that targeted drug therapies may have in malignant transformation of these conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/13816810.2020.1810281DOI Listing
December 2020

Multiplex melanoma families are enriched for polygenic risk.

Hum Mol Genet 2020 10;29(17):2976-2985

Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.

Cancers, including cutaneous melanoma, can cluster in families. In addition to environmental etiological factors such as ultraviolet radiation, cutaneous melanoma has a strong genetic component. Genetic risks for cutaneous melanoma range from rare, high-penetrance mutations to common, low-penetrance variants. Known high-penetrance mutations account for only about half of all densely affected cutaneous melanoma families, and the causes of familial clustering in the remainder are unknown. We hypothesize that some clustering is due to the cumulative effect of a large number of variants of individually small effect. Common, low-penetrance genetic risk variants can be combined into polygenic risk scores. We used a polygenic risk score for cutaneous melanoma to compare families without known high-penetrance mutations with unrelated melanoma cases and melanoma-free controls. Family members had significantly higher mean polygenic load for cutaneous melanoma than unrelated cases or melanoma-free healthy controls (Bonferroni-corrected t-test P = 1.5 × 10-5 and 6.3 × 10-45, respectively). Whole genome sequencing of germline DNA from 51 members of 21 families with low polygenic risk for melanoma identified a CDKN2A p.G101W mutation in a single family but no other candidate high-penetrance melanoma susceptibility genes. This work provides further evidence that melanoma, like many other common complex disorders, can arise from the joint action of multiple predisposing factors, including rare high-penetrance mutations, as well as via a combination of large numbers of alleles of small effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddaa156DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566496PMC
October 2020

Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours.

Nat Commun 2020 05 15;11(1):2408. Epub 2020 May 15.

QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Uveal melanoma (UM) is the most common intraocular tumour in adults and despite surgical or radiation treatment of primary tumours, ~50% of patients progress to metastatic disease. Therapeutic options for metastatic UM are limited, with clinical trials having little impact. Here we perform whole-genome sequencing (WGS) of 103 UM from all sites of the uveal tract (choroid, ciliary body, iris). While most UM have low tumour mutation burden (TMB), two subsets with high TMB are seen; one driven by germline MBD4 mutation, and another by ultraviolet radiation (UVR) exposure, which is restricted to iris UM. All but one tumour have a known UM driver gene mutation (GNAQ, GNA11, BAP1, PLCB4, CYSLTR2, SF3B1, EIF1AX). We identify three other significantly mutated genes (TP53, RPL5 and CENPE).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-16276-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229209PMC
May 2020

Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility.

Nat Genet 2020 05 27;52(5):494-504. Epub 2020 Apr 27.

Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain.

Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0611-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255059PMC
May 2020

Co-targeting bromodomain and extra-terminal proteins and MCL1 induces synergistic cell death in melanoma.

Int J Cancer 2020 10 24;147(8):2176-2189. Epub 2020 Apr 24.

Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.

The treatment of melanoma has been markedly improved by the introduction of targeted therapies and checkpoint blockade immunotherapy. Unfortunately, resistance to these therapies remains a limitation. Novel anticancer therapeutics targeting the MCL1 anti-apoptotic protein have shown impressive responses in haematological cancers but are yet to be evaluated in melanoma. To assess the sensitivity of melanoma to new MCL1 inhibitors, we measured the response of 51 melanoma cell lines to the novel MCL1 inhibitor, S63845. Additionally, we assessed combination of this drug with inhibitors of the bromodomain and extra-terminal (BET) protein family of epigenetic readers, which we postulated would assist MCL1 inhibition by downregulating anti-apoptotic targets regulated by NF-kB such as BCLXL, BCL2A1 and XIAP, and by upregulating pro-apoptotic proteins including BIM and NOXA. Only 14% of melanoma cell lines showed sensitivity to S63845, however, combination of S63845 and I-BET151 induced highly synergistic apoptotic cell death in all melanoma lines tested and in an in vivo xenograft model. Cell death was dependent on caspases and BAX/BAK. Although the combination of drugs increased the BH3-only protein, BIM, and downregulated anti-apoptotic proteins such as BCL2A1, the importance of these proteins in inducing cell death varied between cell lines. ABT-199 or ABT-263 inhibitors against BCL2 or BCL2 and BCLXL, respectively, induced further cell death when combined with S63845 and I-BET151. The combination of MCL1 and BET inhibition appears to be a promising therapeutic approach for metastatic melanoma, and presents opportunities to add further BCL2 family inhibitors to overcome treatment resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.33000DOI Listing
October 2020

Whole Exome Sequencing Identifies Candidate Genes Associated with Hereditary Predisposition to Uveal Melanoma.

Ophthalmology 2020 05 18;127(5):668-678. Epub 2019 Nov 18.

Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio.

Purpose: To identify susceptibility genes associated with hereditary predisposition to uveal melanoma (UM) in patients with no detectable germline BAP1 alterations.

Design: Retrospective case series from academic referral centers.

Participants: Cohort of 154 UM patients with high risk of hereditary cancer defined as patients with 1 or more of the following: (1) familial UM, (2) young age (<35 years) at diagnosis, (3) personal history of other primary cancers, and (4) family history of 2 or more primary cancers with no detectable mutation or deletion in BAP1 gene.

Methods: Whole exome sequencing, a cancer gene panel, or both were carried out. Probands included 27 patients with familial UM, 1 patient with bilateral UM, 1 patient with congenital UM, and 125 UM patients with strong personal or family histories, or both, of cancer. Functional validation of variants was carried out by immunohistochemistry, reverse-transcriptase polymerase chain reaction, and genotyping.

Main Outcome Measures: Clinical characterization of UM patients with germline alterations in known cancer genes.

Results: We identified actionable pathogenic variants in 8 known hereditary cancer predisposition genes (PALB2, MLH1, MSH6, CHEK2, SMARCE1, ATM, BRCA1, and CTNNA1) in 9 patients, including 3 of 27 patients (11%) with familial UM and 6 of 127 patients (4.7%) with a high risk for cancer. Two patients showed pathogenic variants in CHEK2 and PALB2, whereas variants in the other genes each occurred in 1 patient. Biallelic inactivation of PALB2 and MLH1 was observed in tumors from the respective patients. The frequencies of pathogenic variants in PALB2, MLH1, and SMARCE1 in UM patients were significantly higher than the observed frequencies in noncancer controls (PALB2: P = 0.02; odds ratio, 8.9; 95% confidence interval, 1.5-30.6; MLH1: P = 0.04; odds ratio, 25.4; 95% confidence interval, 1.2-143; SMARCE1: P = 0.001; odds ratio, 2047; 95% confidence interval, 52-4.5e15, respectively).

Conclusions: The study provided moderate evidence of gene and disease association of germline mutations in PALB2 and MLH1 with hereditary predisposition to UM. It also identified several other candidate susceptibility genes. The results suggest locus heterogeneity in predisposition to UM. Genetic testing for hereditary predisposition to cancer is warranted in UM patients with strong personal or family history of cancers, or both.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ophtha.2019.11.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183432PMC
May 2020

A Panel of Circulating MicroRNAs Detects Uveal Melanoma With High Precision.

Transl Vis Sci Technol 2019 Nov 14;8(6):12. Epub 2019 Nov 14.

QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Purpose: To determine if a circulating microRNA (miRNA) panel could be used to distinguish between uveal melanoma and uveal nevi.

Methods: We report on a multicenter, cross-sectional study conducted between June 2012 and September 2015. The follow-up time was approximately 3 to 5 years. Blood was drawn from participants presenting with a uveal nevus ( = 10), localized uveal melanoma ( = 50), or metastatic uveal melanoma ( = 5). Levels of 17 miRNAs were measured in blood samples of study participants using a sensitive real-time PCR system.

Results: A panel of six miRNAs (miR-16, miR-145, miR-146a, miR-204, miR-211, and miR-363-3p) showed significant differences between participants with uveal nevi compared with patients with localized and metastatic uveal melanoma. Importantly, miR-211 was able to accurately distinguish metastatic disease from localized uveal melanoma ( < 0.0001; area under the curve = 0.96). When the six-miRNA panel was evaluated as a group it had the ability to identify uveal melanoma when four or more miRNAs (93% sensitivity and 100% specificity) reached or exceeded their cut-point.

Conclusions: This miRNA panel, in tandem with clinical findings, may be suited to confirm benign lesions. In addition, due to the panel's high precision in identifying malignancy, it has the potential to augment melanoma detection in subsequent clinical follow-up of lesions with atypical clinical features.

Translational Relevance: Uveal nevi mimic the appearance of uveal melanoma and their transformation potential cannot be definitively determined without a biopsy. This panel is most relevant at the nevus stage and in lesions with uncertain malignant potential as a companion diagnostic tool to assist in clinical decision-making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/tvst.8.6.12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855372PMC
November 2019

as a candidate high-penetrance melanoma susceptibility gene.

J Med Genet 2020 03 8;57(3):203-210. Epub 2019 Nov 8.

Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands.

Background: A proportion of patients diagnosed with cutaneous melanoma reports a positive family history. Inherited variants in and several other genes have been shown to predispose to melanoma; however, the genetic basis of familial melanoma remains unknown in most cases. The objective of this study was to provide insight into the genetic basis of familial melanoma.

Methods: In order to identify novel melanoma susceptibility genes, whole exome sequencing (WES) analysis was applied in a Dutch family with melanoma. The causality of a candidate variant was characterised by performing cosegregation analysis in five affected family members using patient-derived tissues and digital droplet PCR analysis to accurately quantify mutant allele frequency. Functional in-vitro studies were performed to assess the pathogenicity of the candidate variant.

Results: Application of WES identified a rare, nonsense variant in the gene (c.1120C>T, p.Arg374Ter), cosegregating in all five affected members of a Dutch family. NEK11 (NIMA-related Kinase 11) is involved in the DNA damage response, enforcing the G2/M cell cycle checkpoint. In a melanoma from a variant carrier, somatic loss of the wildtype allele of this putative tumour suppressor gene was demonstrated. Functional analyses showed that the p.Arg374Ter mutation results in strongly reduced expression of the truncated protein caused by proteasomal degradation.

Conclusion: The p.Arg374Ter variant identified in this family leads to loss-of-function through protein instability. Collectively, these findings support as a melanoma susceptibility gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2019-106134DOI Listing
March 2020

Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses.

Cell Rep 2019 10;29(3):573-588.e7

Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:

BRAF fusions are detected in numerous neoplasms, but their clinical management remains unresolved. We identified six melanoma lines harboring BRAF fusions representative of the clinical cases reported in the literature. Their unexpected heterogeneous responses to RAF and MEK inhibitors could be categorized upon specific features of the fusion kinases. Higher expression level correlated with resistance, and fusion partners containing a dimerization domain promoted paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway and hyperproliferation in response to first- and second-generation RAF inhibitors. By contrast, next-generation αC-IN/DFG-OUT RAF inhibitors blunted paradoxical activation across all lines and had their therapeutic efficacy further increased in vitro and in vivo by combination with MEK inhibitors, opening perspectives in the clinical management of tumors harboring BRAF fusions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.09.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939448PMC
October 2019

Evaluation of the contribution of germline variants in BRCA1 and BRCA2 to uveal and cutaneous melanoma.

Melanoma Res 2019 10;29(5):483-490

Oncogenomics Group.

Germline mutations of BRCA1 and BRCA2 predispose individuals to a high risk of breast and ovarian cancer, and elevated risk of other cancers, including those of the pancreas and prostate. BRCA2 mutation carriers may have increased risk of uveal melanoma (UM) and cutaneous melanoma (CM), but associations with these cancers in BRCA1 mutation carriers have been mixed. Here, we further assessed whether UM and CM are associated with BRCA1 or BRCA2 by assessing the presence, segregation and reported/predicted pathogenicity of rare germline mutations (variant allele frequency < 0.01) in families with multiple members affected by these cancers. Whole-genome or exome sequencing was performed on 160 CM and/or UM families from Australia, the Netherlands, Denmark and Sweden. Between one and five cases were sequenced from each family, totalling 307 individuals. Sanger sequencing was performed to validate BRCA1 and BRCA2 germline variants and to assess carrier status in other available family members. A nonsense and a frameshift mutation were identified in BRCA1, both resulting in premature truncation of the protein (the first at p.Q516 and the second at codon 91, after the introduction of seven amino acids due to a frameshift deletion). These variants co-segregated with CM in individuals who consented for testing and were present in individuals with pancreatic, prostate and breast cancer in the respective families. In addition, 33 rare missense mutations (variant allele frequency ranging from 0.00782 to 0.000001 in the aggregated ExAC data) were identified in 34 families. Examining the previously reported evidence of functional consequence of these variants revealed all had been classified as either benign or of unknown consequence. Seeking further evidence of an association between BRCA1 variants and melanoma, we examined two whole-genome/exome sequenced collections of sporadic CM patients (total N = 763). We identified one individual with a deleterious BRCA1 variant, however, this allele was lost (with the wild-type allele remaining) in the corresponding CM, indicating that defective BRCA1 was not a driver of tumorigenesis in this instance. Although this is the first time that deleterious BRCA1 mutations have been described in high-density CM families, we conclude that there is an insufficient burden of evidence to state that the increased familial CM or UM susceptibility is because of these variants. In addition, in conjunction with other studies, we conclude that the previously described association between BRCA2 mutations and UM susceptibility represents a rare source of increased risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/CMR.0000000000000613DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716616PMC
October 2019

Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets.

Nat Commun 2019 07 18;10(1):3163. Epub 2019 Jul 18.

Department of Pathology, University of California, San Francisco, CA, 94143, USA.

Knowledge of key drivers and therapeutic targets in mucosal melanoma is limited due to the paucity of comprehensive mutation data on this rare tumor type. To better understand the genomic landscape of mucosal melanoma, here we describe whole genome sequencing analysis of 67 tumors and validation of driver gene mutations by exome sequencing of 45 tumors. Tumors have a low point mutation burden and high numbers of structural variants, including recurrent structural rearrangements targeting TERT, CDK4 and MDM2. Significantly mutated genes are NRAS, BRAF, NF1, KIT, SF3B1, TP53, SPRED1, ATRX, HLA-A and CHD8. SF3B1 mutations occur more commonly in female genital and anorectal melanomas and CTNNB1 mutations implicate a role for WNT signaling defects in the genesis of some mucosal melanomas. TERT aberrations and ATRX mutations are associated with alterations in telomere length. Mutation profiles of the majority of mucosal melanomas suggest potential susceptibility to CDK4/6 and/or MEK inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11107-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639323PMC
July 2019

Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma.

Pigment Cell Melanoma Res 2019 11 6;32(6):854-863. Epub 2019 Jul 6.

QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Approximately 1%-2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next-generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four-case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/pcmr.12804DOI Listing
November 2019

Correction to: Prolonged stable disease in a uveal melanoma patient with germline MBD4 nonsense mutation treated with pembrolizumab and ipilimumab.

Immunogenetics 2019 Jul;71(7):511

QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.

The authors regret that the online version of this article contains an error. The MBD4 mutation in sample MM138 was given an incorrect dbSNP ID. The correct ID is rs769076971.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00251-019-01120-1DOI Listing
July 2019

Recurrent hotspot SF3B1 mutations at codon 625 in vulvovaginal mucosal melanoma identified in a study of 27 Australian mucosal melanomas.

Oncotarget 2019 Jan 29;10(9):930-941. Epub 2019 Jan 29.

Melanoma Institute Australia, The University of Sydney, Sydney, Australia.

Introduction: Clinical outcomes for mucosal melanomas are often poor due to a lack of effective systemic drug therapies. Identifying driver genes in mucosal melanoma may enhance the understanding of disease pathogenesis and provide novel opportunities to develop effective therapies.

Results: Somatic variant analysis identified (6 of 27: 22%) as the most commonly mutated gene, followed by (3 of 27: 11%). Other less frequently mutated genes (4% otherwise stated) included (7%), (7%), , , , , , , and . Recurrent SF3B1 p.R625 hotspot mutations were exclusively detected in vulvovaginal (5 of 19: 26%) and anorectal melanomas (3 of 5:60%). The only other SF3B1 mutation was a p.C1123Y mutation that occurred in a conjunctival mucosal melanoma.-mutated patients were associated with shorter overall survival (OS; 34.9 months) and progression-free survival (PFS; 16.9 months) compared to non--mutated patients (OS: 79.7 months, log-rank = 0.1172; PFS: 35.7 months, log-rank = 0.0963).

Conclusion: Molecular subgroups of mucosal melanoma with mutations occurred predominantly in the vulvovaginal region. mutations may have a negative prognostic impact.

Methods: Formalin-fixed biopsies were collected from 27 pathologically-confirmed mucosal melanomas. Genomic DNA was isolated from the tumor tissue and sequenced using a novel dual-strand amplicon sequencing technique to determine the frequency and types of mutations across 45 target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.26584DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398173PMC
January 2019

Molecular Genomic Profiling of Melanocytic Nevi.

J Invest Dermatol 2019 08 14;139(8):1762-1768. Epub 2019 Feb 14.

Melanoma Institute Australia, The University of Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.

The benign melanocytic nevus is the most common tumor in humans and rarely transforms into cutaneous melanoma. Elucidation of the nevus genome is required to better understand the molecular steps of progression to melanoma. We performed whole genome sequencing on a series of 14 benign melanocytic nevi consisting of both congenital and acquired types. All nevi had driver mutations in the MAPK signaling pathway, either BRAF V600E or NRAS Q61R/L. No additional definite driver mutations were identified. Somatic mutations in nevi with higher mutation loads showed a predominance of mutational signatures 7a and 7b, consistent with UVR exposure, whereas nevi with lower mutation loads (including all three congenital nevi) had a predominance of the ubiquitous signatures 1 and 5. Two nevi had mutations in promoter regions predicted to bind E26 transformation-specific family transcription factors, as well as subclonal mutations in the TERT promoter. This paper presents whole genome data from melanocytic nevi. We confirm that UVR is involved in the etiology of a subset of nevi. This study also establishes that TERT promoter mutations are present in morphologically benign skin nevi in subclonal populations, which has implications regarding the interpretation of this emerging biomarker in sensitive assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2018.12.033DOI Listing
August 2019

Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT.

J Am Acad Dermatol 2019 Aug 5;81(2):386-394. Epub 2019 Feb 5.

Department of Clinical Sciences, Lund University Hospital Lund, Sweden; Department of Surgery, Lund University Hospital, Lund, Sweden.

Background: Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5%-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of families with melanoma and whether performance improvements can be achieved.

Methods: In total, 2116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CIs) along with net reclassification indices (NRIs) as performance metrics.

Results: MELPREDICT performed well (AUC 0.752, 95% CI 0.730-0.775), and GenoMELPREDICT performance was similar (AUC 0.748, 95% CI 0.726-0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (P < .0001) in GenoMELPREDICT (AUC 0.772, 95% CI 0.750-0.793, NRI 0.40). Including phenotypic risk factors did not improve performance.

Conclusion: The MELPREDICT model functioned well in a global data set of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in directing these patients to receive genetic testing or cancer risk counseling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaad.2019.01.079DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634996PMC
August 2019

Prolonged stable disease in a uveal melanoma patient with germline MBD4 nonsense mutation treated with pembrolizumab and ipilimumab.

Immunogenetics 2019 05 4;71(5-6):433-436. Epub 2019 Feb 4.

QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.

There is currently no effective treatment for metastasised uveal melanoma (UM). Recently, it was reported that a UM patient was responsive to checkpoint inhibitor (CI) treatment, due to a high tumour mutation burden correlated with a germline loss-of-function MBD4 mutation. Here, we report on another UM patient who carried an MBD4 germline nonsense variant (p.Leu563Ter) and her tumour showed a fivefold higher than average mutation burden. We confirmed the association between germline loss-of-function variant in MBD4 and CI response. The patient experienced stable disease (10 months) and survived 2 years with metastatic disease, which is twice as long as median survival. Additionally, the frequency of MBD4 loss-of-function variants in reported UM cohorts was > 20 times higher than in an aggregated population genome database (P < 5 × 10), implying a potential role as UM predisposition gene. These findings provide a strong basis for the inclusion of MBD4 in the screening of potential UM-prone families as well as stratification of immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00251-019-01108-xDOI Listing
May 2019
-->