Publications by authors named "Nicholas J Timpson"

266 Publications

The blood metabolome of incident kidney cancer: A case-control study nested within the MetKid consortium.

PLoS Med 2021 Sep 20;18(9):e1003786. Epub 2021 Sep 20.

Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.

Background: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI).

Methods And Findings: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case-control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10-8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10-5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some-but not all-metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., -0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10-5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10-3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds.

Conclusions: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI-the principal modifiable risk factor of kidney cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1003786DOI Listing
September 2021

Body muscle gain and markers of cardiovascular disease susceptibility in young adulthood: A cohort study.

PLoS Med 2021 Sep 9;18(9):e1003751. Epub 2021 Sep 9.

MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.

Background: The potential benefits of gaining body muscle for cardiovascular disease (CVD) susceptibility, and how these compare with the potential harms of gaining body fat, are unknown. We compared associations of early life changes in body lean mass and handgrip strength versus body fat mass with atherogenic traits measured in young adulthood.

Methods And Findings: Data were from 3,227 offspring of the Avon Longitudinal Study of Parents and Children (39% male; recruited in 1991-1992). Limb lean and total fat mass indices (kg/m2) were measured using dual-energy X-ray absorptiometry scans performed at age 10, 13, 18, and 25 y (across clinics occurring from 2001-2003 to 2015-2017). Handgrip strength was measured at 12 and 25 y, expressed as maximum grip (kg or lb/in2) and relative grip (maximum grip/weight in kilograms). Linear regression models were used to examine associations of change in standardised measures of these exposures across different stages of body development with 228 cardiometabolic traits measured at age 25 y including blood pressure, fasting insulin, and metabolomics-derived apolipoprotein B lipids. SD-unit gain in limb lean mass index from 10 to 25 y was positively associated with atherogenic traits including very-low-density lipoprotein (VLDL) triglycerides. This pattern was limited to lean gain in legs, whereas lean gain in arms was inversely associated with traits including VLDL triglycerides, insulin, and glycoprotein acetyls, and was also positively associated with creatinine (a muscle product and positive control). Furthermore, this pattern for arm lean mass index was specific to SD-unit gains occurring between 13 and 18 y, e.g., -0.13 SD (95% CI -0.22, -0.04) for VLDL triglycerides. Changes in maximum and relative grip from 12 to 25 y were both positively associated with creatinine, but only change in relative grip was also inversely associated with atherogenic traits, e.g., -0.12 SD (95% CI -0.18, -0.06) for VLDL triglycerides per SD-unit gain. Change in fat mass index from 10 to 25 y was more strongly associated with atherogenic traits including VLDL triglycerides, at 0.45 SD (95% CI 0.39, 0.52); these estimates were directionally consistent across sub-periods, with larger effect sizes with more recent gains. Associations of lean, grip, and fat measures with traits were more pronounced among males. Study limitations include potential residual confounding of observational estimates, including by ectopic fat within muscle, and the absence of grip measures in adolescence for estimates of grip change over sub-periods.

Conclusions: In this study, we found that muscle strengthening, as indicated by grip strength gain, was weakly associated with lower atherogenic trait levels in young adulthood, at a smaller magnitude than unfavourable associations of fat mass gain. Associations of muscle mass gain with such traits appear to be smaller and limited to gains occurring in adolescence. These results suggest that body muscle is less robustly associated with markers of CVD susceptibility than body fat and may therefore be a lower-priority intervention target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1003751DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428664PMC
September 2021

Examining the causal association between 25-hydroxyvitamin D and caries in children and adults: a two-sample Mendelian randomization approach.

Wellcome Open Res 2020 20;5:281. Epub 2021 Jul 20.

Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK.

Prior observational studies have reported that higher levels of vitamin D are associated with decreased caries risk in children. However, these studies are prone to bias and confounding so do not provide causal inference. Genetic variants associated with a risk factor of interest can be used as proxies, in a Mendelian randomization (MR) analysis, to test for causal association with an outcome. The objective was to estimate the causal association between serum 25-hydroxyvitamin D (25(OH)D) (the commonly measured vitamin D metabolite in blood) and dental caries using a two-sample MR approach which estimates the causal effect of an exposure on an outcome. A total of 79 genetic variants reliably associated with 25(OH)D were identified from genome-wide association studies and used as a proxy measure of 25(OH)D. The association of this proxy measure with three outcome measures was tested; specifically: caries in primary teeth (n=17,035, aged 3-12 years), caries in permanent teeth in childhood and adolescence (n=13,386, aged 6-18 years), and caries severity in adulthood proxied by decayed, missing and filled tooth surfaces (DMFS) counts (n=26,792, aged 18-93 years). The estimated causal effect of a one standard deviation increase in natural log-transformed 25(OH)D could be summarized as an odds ratio of 1.06 (95%CI: 0.81, 1.31; P=0.66) for caries in primary teeth and 1.00 (95%CI: 0.76, 1.23; P=0.97) for caries in permanent teeth in childhood and adolescence. In adults, the estimated casual effect of a one standard deviation increase in natural log-transformed 25(OH)D was 0.31 fewer affected tooth surfaces (95%CI: from 1.81 fewer DMFS to 1.19 more DMFS; P=0.68) The MR-derived effect estimates for these three measures are small in magnitude with wide confidence intervals and do not provide evidence for a causal relationship between 25(OH)D and dental caries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/wellcomeopenres.16369.2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327219.2PMC
July 2021

Genetic insights into biological mechanisms governing human ovarian ageing.

Nature 2021 08 4;596(7872):393-397. Epub 2021 Aug 4.

Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Reproductive longevity is essential for fertility and influences healthy ageing in women, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03779-7DOI Listing
August 2021

Schizophrenia-associated variation at ZNF804A correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults.

Sleep 2021 Jul 30. Epub 2021 Jul 30.

School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK.

The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N=22) or the alternative 'C' allele (N=18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsab191DOI Listing
July 2021

Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma.

Cancer Discov 2021 Jul 8. Epub 2021 Jul 8.

Abramson Family Cancer Research Institute, University of Pennsylvania

Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets (LDs) containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses performed on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk. Depriving ccRCC cells of either cholesterol or HDL compromises proliferation and survival in vitro and tumor growth in vivo; in contrast, elevated dietary cholesterol promotes tumor growth. Scavenger Receptor B1 (SCARB1) is uniquely required for cholesterol import, and inhibiting SCARB1 is sufficient to cause ccRCC cell cycle arrest, apoptosis, elevated intracellular reactive oxygen species levels and decreased PI3K/AKT signaling. Collectively, we reveal a cholesterol dependency in ccRCC and implicate SCARB1 as a novel therapeutic target for treating kidney cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/2159-8290.CD-21-0211DOI Listing
July 2021

Effects of adiposity on the human plasma proteome: observational and Mendelian randomisation estimates.

Int J Obes (Lond) 2021 Oct 5;45(10):2221-2229. Epub 2021 Jul 5.

Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.

Background: Variation in adiposity is associated with cardiometabolic disease outcomes, but mechanisms leading from this exposure to disease are unclear. This study aimed to estimate effects of body mass index (BMI) on an extensive set of circulating proteins.

Methods: We used SomaLogic proteomic data from up to 2737 healthy participants from the INTERVAL study. Associations between self-reported BMI and 3622 unique plasma proteins were explored using linear regression. These were complemented by Mendelian randomisation (MR) analyses using a genetic risk score (GRS) comprised of 654 BMI-associated polymorphisms from a recent genome-wide association study (GWAS) of adult BMI. A disease enrichment analysis was performed using DAVID Bioinformatics 6.8 for proteins which were altered by BMI.

Results: Observationally, BMI was associated with 1576 proteins (P < 1.4 × 10), with particularly strong evidence for a positive association with leptin and fatty acid-binding protein-4 (FABP4), and a negative association with sex hormone-binding globulin (SHBG). Observational estimates were likely confounded, but the GRS for BMI did not associate with measured confounders. MR analyses provided evidence for a causal relationship between BMI and eight proteins including leptin (0.63 standard deviation (SD) per SD BMI, 95% CI 0.48-0.79, P = 1.6 × 10), FABP4 (0.64 SD per SD BMI, 95% CI 0.46-0.83, P = 6.7 × 10) and SHBG (-0.45 SD per SD BMI, 95% CI -0.65 to -0.25, P = 1.4 × 10). There was agreement in the magnitude of observational and MR estimates (R = 0.33) and evidence that proteins most strongly altered by BMI were enriched for genes involved in cardiovascular disease.

Conclusions: This study provides evidence for a broad impact of adiposity on the human proteome. Proteins strongly altered by BMI include those involved in regulating appetite, sex hormones and inflammation; such proteins are also enriched for cardiovascular disease-related genes. Altogether, results help focus attention onto new proteomic signatures of obesity-related disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41366-021-00896-1DOI Listing
October 2021

Piloting the objective measurement of eating behaviour at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children.

Wellcome Open Res 2020 4;5:185. Epub 2020 Aug 4.

Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.

Effective measurement and adaption of eating behaviours, such as eating speed, may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove an effective approach to measuring eating behaviours at large scale. We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m ) and that A/A homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but no strong evidence that individuals with medium- or high-fat diets ate at a faster rate. We demonstrated the potential for assessing eating behaviour in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/wellcomeopenres.16091.1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215563PMC
August 2020

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort.

Nat Med 2021 06 27;27(6):1088-1096. Epub 2021 May 27.

Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK.

Mutations in the melanocortin 4 receptor gene (MC4R) are associated with obesity but little is known about the prevalence and impact of such mutations throughout human growth and development. We examined the MC4R coding sequence in 5,724 participants from the Avon Longitudinal Study of Parents and Children, functionally characterized all nonsynonymous MC4R variants and examined their association with anthropometric phenotypes from childhood to early adulthood. The frequency of heterozygous loss-of-function (LoF) mutations in MC4R was ~1 in 337 (0.30%), considerably higher than previous estimates. At age 18 years, mean differences in body weight, body mass index and fat mass between carriers and noncarriers of LoF mutations were 17.76 kg (95% CI 9.41, 26.10), 4.84 kg m (95% CI 2.19, 7.49) and 14.78 kg (95% CI 8.56, 20.99), respectively. MC4R LoF mutations may be more common than previously reported and carriers of such variants may enter adult life with a substantial burden of excess adiposity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01349-yDOI Listing
June 2021

Pleiotropic associations of heterozygosity for the Z allele in the UK Biobank.

ERJ Open Res 2021 Apr 10;7(2). Epub 2021 May 10.

Division of Respiratory Medicine, University of Nottingham, and NIHR Nottingham BRC, NUH NHS Trust, Nottingham, UK.

Homozygosity for the Z allele causes α-antitrypsin deficiency, a rare condition that can cause lung and liver disease. However, the effects of Z allele heterozygosity on nonrespiratory phenotypes, and on lung function in the general population, remain unclear. We conducted a large, population-based study to determine Z allele effects on >2400 phenotypes in the UK Biobank (N=303 353). Z allele heterozygosity was strongly associated with increased height (β=1.02 cm, p=3.91×10), and with other nonrespiratory phenotypes including increased risk of gall bladder disease, reduced risk of heart disease and lower blood pressure, reduced risk of osteoarthritis and reduced bone mineral density, increased risk of headache and enlarged prostate, as well as with blood biomarkers of liver function. Heterozygosity was associated with higher height-adjusted forced expiratory volume in 1 s (FEV) (β=19.36 mL, p=9.21×10) and FEV/forced vital capacity (β=0.0031, p=1.22×10) in nonsmokers, whereas in smokers, this protective effect was abolished. Furthermore, we show for the first time that sex modifies the association of the Z allele on lung function. We conclude that Z allele heterozygosity and homozygosity exhibit opposing effects on lung function in the UK population, and that these associations are modified by smoking and sex. In exploratory analyses, heterozygosity for the Z allele also showed pleiotropic associations with nonrespiratory health-related traits and disease risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1183/23120541.00049-2021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107350PMC
April 2021

A Polygenic Risk Score to Predict Future Adult Short Stature Among Children.

J Clin Endocrinol Metab 2021 Jun;106(7):1918-1928

Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada.

Context: Adult height is highly heritable, yet no genetic predictor has demonstrated clinical utility compared to mid-parental height.

Objective: To develop a polygenic risk score for adult height and evaluate its clinical utility.

Design: A polygenic risk score was constructed based on meta-analysis of genomewide association studies and evaluated on the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort.

Subjects: Participants included 442 599 genotyped White British individuals in the UK Biobank and 941 genotyped child-parent trios of European ancestry in the ALSPAC cohort.

Interventions: None.

Main Outcome Measures: Standing height was measured using stadiometer; Standing height 2 SDs below the sex-specific population average was considered as short stature.

Results: Combined with sex, a polygenic risk score captured 71.1% of the total variance in adult height in the UK Biobank. In the ALSPAC cohort, the polygenic risk score was able to identify children who developed adulthood short stature with an area under the receiver operating characteristic curve (AUROC) of 0.84, which is close to that of mid-parental height. Combining this polygenic risk score with mid-parental height or only one of the child's parent's height could improve the AUROC to at most 0.90. The polygenic risk score could also substitute mid-parental height in age-specific Khamis-Roche height predictors and achieve an equally strong discriminative power in identifying children with a short stature in adulthood.

Conclusions: A polygenic risk score could be considered as an alternative or adjunct to mid-parental height to improve screening for children at risk of developing short stature in adulthood in European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgab215DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266463PMC
June 2021

Polygenic risk for depression, anxiety and neuroticism are associated with the severity and rate of change in depressive symptoms across adolescence.

J Child Psychol Psychiatry 2021 Mar 28. Epub 2021 Mar 28.

MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

Background: Adolescence marks a period where depression will commonly onset. Twin studies show that genetic influences play a role in how depression develops and changes across adolescence. Recent genome-wide association studies highlight that common genetic variants - which can be combined into polygenic risk scores (PRS) - are also implicated in depression. However, the role of PRS in adolescent depression and changes in adolescent depression is not yet understood. We aimed to examine associations between PRS for five psychiatric traits and depressive symptoms measured across adolescence using cross-sectional and growth-curve models. The five PRS were as follows: depression (DEP), major depressive disorder (MDD), anxiety (ANX), neuroticism (NEU) and schizophrenia (SCZ).

Methods: We used data from over 6,000 participants of the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine associations between the five PRS and self-reported depressive symptoms (Short Mood and Feelings Questionnaire) over 9 occasions from 10 to 24 years. The PRS were created from well-powered genome-wide association studies conducted in adult populations. We examined cross-sectional associations between the PRS at each age and then again with longitudinal trajectories of depressive symptoms in a repeated measures framework using multilevel growth-curve analysis to examine the severity and the rate of change.

Results: There was strong evidence that higher PRS for DEP, MDD and NEU were associated with worse depressive symptoms throughout adolescence and into young adulthood in our cross-sectional analysis, with consistent associations observed across all nine occasions. Growth-curve analyses provided stronger associations (as measured by effect sizes) and additional insights, demonstrating that individuals with higher PRS for DEP, MDD and NEU had steeper trajectories of depressive symptoms across development, all with a greater increasing rate of change during adolescence. Evidence was less consistent for the ANX and SCZ PRS in the cross-sectional analysis, yet there was some evidence for an increasing rate of change in adolescence in the growth-curve analyses with the ANX PRS.

Conclusions: These results show that common genetic variants as indexed by varying psychiatric PRS show patterns of specificity that influence both the severity and rate of change in depressive symptoms throughout adolescence and then into young adulthood. Longitudinal data that make use of repeated measures designs have the potential to provide greater insights how genetic factors influence the onset and persistence of adolescent depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpp.13422DOI Listing
March 2021

Characterization of alcohol polygenic risk scores in the context of mental health outcomes: Within-individual and intergenerational analyses in the Avon Longitudinal Study of Parents and Children.

Drug Alcohol Depend 2021 04 27;221:108654. Epub 2021 Feb 27.

MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK.

Background: Heavy alcohol consumption often co-occurs with mental health problems; this could be due to confounding, shared biological mechanisms, or causal effects. Polygenic risk scores (PRS) for alcohol use can be used to explore this association at critical life stages.

Design: We characterized a PRS reliably associated with patterns of adult alcohol consumption by 1) validating whether it predicts own alcohol use at different life-stages (pregnancy, adolescence) of interest for mental health impact. Additionally, we explored associations of alcohol PRS on mental health phenotypes 2) within-individuals (using own alcohol PRS on own phenotypes) and 3) intergenerationally (using maternal alcohol PRS on offspring phenotypes). We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 960-7841). Additional substance abuse behaviors and mental health/behavioral outcomes were investigated (alcohol phenotypes n = 22; health phenotypes n = 91).

Findings: Maternal alcohol PRS was associated with consumption during pregnancy (strongest signal: alcohol frequency at 18 weeks' gestation: β = 0.041, 95%CI = 0.0.02-0.06), p = 1.01 × 10, adjusted R = 1.6 %), offspring alcohol PRS did not predict offspring alcohol consumption. We found evidence for an association of maternal alcohol PRS with own perinatal depression (OR  = 1.10, 95% CI = 1.02 to 1.18, p = 0.022) and decreased offspring intellectual ability (β=-0.209, 95% CI -0.38 to -0.04, p= 0.016).

Conclusions: These alcohol PRS are a valid proxy for maternal alcohol use in pregnancy. Offspring alcohol PRS was not associated with drinking in adolescence. Consistently with results from different study designs, we found evidence that maternal alcohol PRS are associated with both prenatal depression and decreased offspring intellectual ability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drugalcdep.2021.108654DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047864PMC
April 2021

Vitamin D levels and risk of type 1 diabetes: A Mendelian randomization study.

PLoS Med 2021 02 25;18(2):e1003536. Epub 2021 Feb 25.

Centre for Clinical Epidemiology, Department of Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.

Background: Vitamin D deficiency has been associated with type 1 diabetes in observational studies, but evidence from randomized controlled trials (RCTs) is lacking. The aim of this study was to test whether genetically decreased vitamin D levels are causally associated with type 1 diabetes using Mendelian randomization (MR).

Methods And Findings: For our two-sample MR study, we selected as instruments single nucleotide polymorphisms (SNPs) that are strongly associated with 25-hydroxyvitamin D (25OHD) levels in a large vitamin D genome-wide association study (GWAS) on 443,734 Europeans and obtained their corresponding effect estimates on type 1 diabetes risk from a large meta-analysis of 12 type 1 diabetes GWAS studies (Ntot = 24,063, 9,358 cases, and 15,705 controls). In addition to the main analysis using inverse variance weighted MR, we applied 3 additional methods to control for pleiotropy (MR-Egger, weighted median, and mode-based estimate) and compared the respective MR estimates. We also undertook sensitivity analyses excluding SNPs with potential pleiotropic effects. We identified 69 lead independent common SNPs to be genome-wide significant for 25OHD, explaining 3.1% of the variance in 25OHD levels. MR analyses suggested that a 1 standard deviation (SD) decrease in standardized natural log-transformed 25OHD (corresponding to a 29-nmol/l change in 25OHD levels in vitamin D-insufficient individuals) was not associated with an increase in type 1 diabetes risk (inverse-variance weighted (IVW) MR odds ratio (OR) = 1.09, 95% CI: 0.86 to 1.40, p = 0.48). We obtained similar results using the 3 pleiotropy robust MR methods and in sensitivity analyses excluding SNPs associated with serum lipid levels, body composition, blood traits, and type 2 diabetes. Our findings indicate that decreased vitamin D levels did not have a substantial impact on risk of type 1 diabetes in the populations studied. Study limitations include an inability to exclude the existence of smaller associations and a lack of evidence from non-European populations.

Conclusions: Our findings suggest that 25OHD levels are unlikely to have a large effect on risk of type 1 diabetes, but larger MR studies or RCTs are needed to investigate small effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1003536DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906317PMC
February 2021

Estimating the causal effect of BMI on mortality risk in people with heart disease, diabetes and cancer using Mendelian randomization.

Int J Cardiol 2021 05 14;330:214-220. Epub 2021 Feb 14.

Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, UK; Diabetes, Endocrinology and Metabolism Centre, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 0HY, UK.

Background: Observational data have reported that being overweight or obese, compared to being normal weight, is associated with a lower risk for death - the "obesity paradox". We used Mendelian randomization (MR) to estimate causal effects of body mass index (BMI) on mortality risks in people with coronary heart disease (CHD), type 2 diabetes mellitus (T2DM) or malignancy in whom this paradox has been often reported.

Methods: We studied 457,746 White British UK Biobank participants including three subgroups with T2DM (n = 19,737), CHD (n = 21,925) or cancer (n = 42,612) at baseline and used multivariable-adjusted Cox models and MR approaches to describe relationships between BMI and mortality risk.

Results: Observational Cox models showed J-shaped relationships between BMI and mortality risk including within disease subgroups in which the BMI values associated with minimum mortality risk were within overweight/obese ranges (26.5-32.5 kg/m). In all participants, MR analyses showed a positive linear causal effect of BMI on mortality risk (HR for mortality per unit higher BMI: 1.05; 95% CI: 1.03-1.08), also evident in people with CHD (HR: 1.08; 95% CI: 1.01-1.14). Point estimates for hazard ratios across all BMI values in participants with T2DM and cancer were consistent with overall positive linear effects but confidence intervals included the null.

Conclusion: These data support the idea that population efforts to promote intentional weight loss towards the normal BMI range would reduce, not enhance, mortality risk in the general population including, importantly, individuals with CHD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2021.02.027DOI Listing
May 2021

Genome-wide association study of circulating interleukin 6 levels identifies novel loci.

Hum Mol Genet 2021 04;30(5):393-409

Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK.

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098112PMC
April 2021

The Role of Inflammatory Cytokines as Intermediates in the Pathway from Increased Adiposity to Disease.

Obesity (Silver Spring) 2021 02;29(2):428-437

MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK.

Objective: This study aimed to investigate the role of cytokines as intermediates in the pathway from increased adiposity to disease.

Methods: BMI and circulating levels of up to 41 cytokines were measured in individuals from three Finnish cohort studies (n = 8,293). Mendelian randomization (MR) was used to assess the impact of BMI on circulating cytokines and the impact of BMI-driven cytokines on risk of obesity-related diseases.

Results: Observationally, BMI was associated with 19 cytokines. For every SD increase in BMI, causal effect estimates were strongest for hepatocyte growth factor, monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and were as ratios of geometric means 1.13 (95% CI: 1.08-1.19), 1.08 (95% CI: 1.04-1.14), and 1.13 (95% CI: 1.04-1.21), respectively. TRAIL was associated with a small increase in the odds of coronary artery disease (odds ratio: 1.03; 95% CI: 1.00-1.06). There was inconsistent evidence for a protective role of MCP-1 against inflammatory bowel diseases.

Conclusions: Observational and MR estimates of the effect of BMI on cytokine levels were generally concordant. There was little evidence for an effect of raised levels of BMI-driven cytokines on disease. These findings illustrate the challenges of MR when applied in the context of molecular mediation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.23060DOI Listing
February 2021

Large-scale association analyses identify host factors influencing human gut microbiome composition.

Nat Genet 2021 02 18;53(2):156-165. Epub 2021 Jan 18.

Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10 < P < 5 × 10) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00763-1DOI Listing
February 2021

Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.

Nat Commun 2021 01 5;12(1):24. Epub 2021 Jan 5.

Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19366-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785747PMC
January 2021

Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study.

BMC Med 2020 12 17;18(1):396. Epub 2020 Dec 17.

Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Background: Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood.

Methods: We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models.

Results: In sex-specific MR analyses, higher BMI (per 4.2 kg/m) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P ≤ 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles.

Conclusions: Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12916-020-01855-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745469PMC
December 2020

Enhanced Protection Against Diarrhea Among Breastfed Infants of Nonsecretor Mothers.

Pediatr Infect Dis J 2021 03;40(3):260-263

From the Department of Pediatrics and Child Health, University of Manitoba and Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.

Diarrhea is a major cause of infant mortality. Being a "nonsecretor" (having an inactive fucosyltransferase-2 gene) protects against diarrhea by inhibiting enteric infections. Breastfeeding also protects against diarrhea; however, the impact of maternal secretor status is unknown. In the ALSPAC cohort (N = 4971), we found that breastfeeding by nonsecretor mothers was especially protective against diarrhea, which could inform new prevention strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/INF.0000000000003014DOI Listing
March 2021

Common maternal and fetal genetic variants show expected polygenic effects on risk of small- or large-for-gestational-age (SGA or LGA), except in the smallest 3% of babies.

PLoS Genet 2020 12 7;16(12):e1009191. Epub 2020 Dec 7.

Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom.

Babies born clinically Small- or Large-for-Gestational-Age (SGA or LGA; sex- and gestational age-adjusted birth weight (BW) <10th or >90th percentile, respectively), are at higher risks of complications. SGA and LGA include babies who have experienced environment-related growth-restriction or overgrowth, respectively, and babies who are heritably small or large. However, the relative proportions within each group are unclear. We assessed the extent to which common genetic variants underlying variation in birth weight influence the probability of being SGA or LGA. We calculated independent fetal and maternal genetic scores (GS) for BW in 11,951 babies and 5,182 mothers. These scores capture the direct fetal and indirect maternal (via intrauterine environment) genetic contributions to BW, respectively. We also calculated maternal fasting glucose (FG) and systolic blood pressure (SBP) GS. We tested associations between each GS and probability of SGA or LGA. For the BW GS, we used simulations to assess evidence of deviation from an expected polygenic model. Higher BW GS were strongly associated with lower odds of SGA and higher odds of LGA (ORfetal = 0.75 (0.71,0.80) and 1.32 (1.26,1.39); ORmaternal = 0.81 (0.75,0.88) and 1.17 (1.09,1.25), respectively per 1 decile higher GS). We found evidence that the smallest 3% of babies had a higher BW GS, on average, than expected from their observed birth weight (assuming an additive polygenic model: Pfetal = 0.014, Pmaternal = 0.062). Higher maternal SBP GS was associated with higher odds of SGA P = 0.005. We conclude that common genetic variants contribute to risk of SGA and LGA, but that additional factors become more important for risk of SGA in the smallest 3% of babies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009191DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721187PMC
December 2020

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Mental health before and during the COVID-19 pandemic in two longitudinal UK population cohorts.

Br J Psychiatry 2020 Nov 24:1-10. Epub 2020 Nov 24.

MRC Integrative Epidemiology Unit at the University of Bristol, UK; and Population Health Sciences, Bristol Medical School, University of Bristol, UK.

Background: The COVID-19 pandemic and mitigation measures are likely to have a marked effect on mental health. It is important to use longitudinal data to improve inferences.

Aims: To quantify the prevalence of depression, anxiety and mental well-being before and during the COVID-19 pandemic. Also, to identify groups at risk of depression and/or anxiety during the pandemic.

Method: Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) index generation (n = 2850, mean age 28 years) and parent generation (n = 3720, mean age 59 years), and Generation Scotland (n = 4233, mean age 59 years). Depression was measured with the Short Mood and Feelings Questionnaire in ALSPAC and the Patient Health Questionnaire-9 in Generation Scotland. Anxiety and mental well-being were measured with the Generalised Anxiety Disorder Assessment-7 and the Short Warwick Edinburgh Mental Wellbeing Scale.

Results: Depression during the pandemic was similar to pre-pandemic levels in the ALSPAC index generation, but those experiencing anxiety had almost doubled, at 24% (95% CI 23-26%) compared with a pre-pandemic level of 13% (95% CI 12-14%). In both studies, anxiety and depression during the pandemic was greater in younger members, women, those with pre-existing mental/physical health conditions and individuals in socioeconomic adversity, even when controlling for pre-pandemic anxiety and depression.

Conclusions: These results provide evidence for increased anxiety in young people that is coincident with the pandemic. Specific groups are at elevated risk of depression and anxiety during the COVID-19 pandemic. This is important for planning current mental health provisions and for long-term impact beyond this pandemic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1192/bjp.2020.242DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844173PMC
November 2020

Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.

PLoS Genet 2020 10 12;16(10):e1008718. Epub 2020 Oct 12.

Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008718DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581004PMC
October 2020
-->