Publications by authors named "Nicholas G D Masca"

14 Publications

  • Page 1 of 1

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019

Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 05;50(5):766-767

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0082-3DOI Listing
May 2018

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 01 22;50(1):26-41. Epub 2017 Dec 22.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-017-0011-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945951PMC
January 2018

Exome-wide association study of plasma lipids in >300,000 individuals.

Nat Genet 2017 Dec 30;49(12):1758-1766. Epub 2017 Oct 30.

Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709146PMC
December 2017

Large-Scale Analysis of Determinants, Stability, and Heritability of High-Density Lipoprotein Cholesterol Efflux Capacity.

Arterioscler Thromb Vasc Biol 2017 10 31;37(10):1956-1962. Epub 2017 Aug 31.

From the Department of Cardiovascular Sciences and NIHR Leicester Biomedical Centre, University of Leicester, United Kingdom (A.L.K., V.C., N.G.D.M., C.P.N., M.D.M., N.J.S.); German Heart Center, Technische Universität, Munich, Germany (B.M.K., C.H.); Department for Internal Medicine I, St. Josefs-Hospital, Wiesbaden, Germany (B.M.K.); German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.H.); and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.).

Objective: Cholesterol efflux capacity (CEC) has emerged as a biomarker of coronary artery disease risk beyond plasma high-density lipoprotein (HDL) cholesterol (HDL-C) level. However, the determinants of CEC are incompletely characterized. We undertook a large-scale family-based population study to identify clinical, biochemical, and HDL particle parameter determinants of CEC, characterize reasons for the discordancy with HDL-C, quantify its heritability, and assess its stability over 10 to 12 years.

Approaches And Results: CEC was quantified in 1988 individuals from the GRAPHIC (Genetic Regulation of Arterial Pressure of Humans in the Community) cohort, comprising individuals from 2 generations from 520 white nuclear families. Serum lipid and lipoprotein levels were determined by ultracentrifugation or nuclear magnetic resonance and HDL particle size and number quantified by nuclear magnetic resonance. Ninety unrelated individuals had repeat CEC measurements in samples collected after 10 to 12 years. CEC was positively correlated with HDL-C (=0.62; <0.0001). Among clinical and biochemical parameters, age, systolic blood pressure, alcohol consumption, serum albumin, triglycerides, phospholipids, and lipoprotein(a) were independently associated with CEC. Among HDL particle parameters, HDL particle number, particle size, and apolipoprotein A-II level were independently associated with CEC. Serum triglyceride level partially explained discordancy between CEC and HDL-C. CEC measurements in samples collected 10 to 12 years apart were strongly correlated (=0.73; <0.0001). Heritability of CEC was 0.31 (=3.89×10) without adjustment for HDL-C and 0.13 (=1.44×10) with adjustment.

Conclusions: CEC is a stable trait over time, is influenced by specific clinical, serum, and HDL particle parameters factors beyond HDL-C, can be maintained in persons with a low plasma HDL-C by elevated serum triglyceride level, and is modestly independently heritable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.309201DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627541PMC
October 2017

Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease.

J Am Coll Cardiol 2017 Feb;69(7):823-836

Department of Biostatistics, Academic Medical Center, Amsterdam, the Netherlands.

Background: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits.

Objectives: This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci.

Methods: In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs.

Results: We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10 with a range of other diseases/traits.

Conclusions: We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2016.11.056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314135PMC
February 2017

Rare and low-frequency coding variants alter human adult height.

Nature 2017 02 1;542(7640):186-190. Epub 2017 Feb 1.

Netherlands Comprehensive Cancer Organisation, Utrecht, 3501 DB, The Netherlands.

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature21039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302847PMC
February 2017

Analysis with the exome array identifies multiple new independent variants in lipid loci.

Hum Mol Genet 2016 09 27;25(18):4094-4106. Epub 2016 Jul 27.

Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.

It has been hypothesized that low frequency (1-5% minor allele frequency (MAF)) and rare (<1% MAF) variants with large effect sizes may contribute to the missing heritability in complex traits. Here, we report an association analysis of lipid traits (total cholesterol, LDL-cholesterol, HDL-cholesterol triglycerides) in up to 27 312 individuals with a comprehensive set of low frequency coding variants (ExomeChip), combined with conditional analysis in the known lipid loci. No new locus reached genome-wide significance. However, we found a new lead variant in 26 known lipid association regions of which 16 were >1000-fold more significant than the previous sentinel variant and not in close LD (six had MAF <5%). Furthermore, conditional analysis revealed multiple independent signals (ranging from 1 to 5) in a third of the 98 lipid loci tested, including rare variants. Addition of our novel associations resulted in between 1.5- and 2.5-fold increase in the proportion of heritability explained for the different lipid traits. Our findings suggest that rare coding variants contribute to the genetic architecture of lipid traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw227DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291227PMC
September 2016

Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

N Engl J Med 2016 03 2;374(12):1134-44. Epub 2016 Mar 2.

Background: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets.

Methods: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes.

Results: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)).

Conclusions: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1507652DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850838PMC
March 2016

Intertechnique agreement and interstudy reproducibility of strain and diastolic strain rate at 1.5 and 3 Tesla: a comparison of feature-tracking and tagging in patients with aortic stenosis.

J Magn Reson Imaging 2015 Apr 3;41(4):1129-37. Epub 2014 Apr 3.

Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.

Purpose: To determine the interstudy reproducibility of myocardial strain and peak early-diastolic strain rate (PEDSR) measurement on cardiovascular magnetic resonance imaging (MRI) assessed with feature tracking (FT) and tagging, in patients with aortic stenosis (AS).

Materials And Methods: Cardiac MRI was performed twice (1-14 days apart) in 18 patients (8 at 1.5 Tesla [T], 10 at 3T) with moderate-severe AS. Circumferential peak systolic strain (PSS) and PEDSR were measured in all patients. Longitudinal PSS and PEDSR were assessed using FT in all patients, and tagging in the 3T sub-group.

Results: PSS was higher with FT than tagging (21.0 ± 1.9% versus 17.0 ± 3.4% at 1.5T, 21.4 ± 4.0% versus 17.7 ± 3.0% at 3T, P < 0.05), as was PEDSR (1.3 ± 0.3 s(-1) versus 1.0 ± 0.3 s(-1) , P = 0.10 at 1.5T and 1.3 ± 0.4 s(-1) versus 0.8 ± 0.3 s(-1) , P < 0.05 at 3T). The reproducibility of PSS was excellent with FT (coefficient of variation [CoV] 9-10%) and good with tagging at 1.5T (13-19%). Reproducibility of circumferential PEDSR was best at 1.5T when only basal/mid slices were included (CoV 12%), but moderate to poor at 3T (29-35%). Reproducibility of longitudinal strain was good with FT (10-16%) but moderate for PEDSR (∼30%).

Conclusion: In patients with AS, FT consistently produces higher values compared with tagging. The interstudy reproducibility of PSS is excellent with FT and good with tagging. The reproducibility of circumferential PEDSR at 1.5T is good when only basal and mid slices are used.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.24625DOI Listing
April 2015
-->