Publications by authors named "Neal D Kapoor"

3 Publications

  • Page 1 of 1

Availability and reporting quality of external validations of machine-learning prediction models with orthopedic surgical outcomes: a systematic review.

Acta Orthop 2021 Apr 18:1-9. Epub 2021 Apr 18.

Orthopedic Oncology Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA;

Background and purpose - External validation of machine learning (ML) prediction models is an essential step before clinical application. We assessed the proportion, performance, and transparent reporting of externally validated ML prediction models in orthopedic surgery, using the Transparent Reporting for Individual Prognosis or Diagnosis (TRIPOD) guidelines.Material and methods - We performed a systematic search using synonyms for every orthopedic specialty, ML, and external validation. The proportion was determined by using 59 ML prediction models with only internal validation in orthopedic surgical outcome published up until June 18, 2020, previously identified by our group. Model performance was evaluated using discrimination, calibration, and decision-curve analysis. The TRIPOD guidelines assessed transparent reporting.Results - We included 18 studies externally validating 10 different ML prediction models of the 59 available ML models after screening 4,682 studies. All external validations identified in this review retained good discrimination. Other key performance measures were provided in only 3 studies, rendering overall performance evaluation difficult. The overall median TRIPOD completeness was 61% (IQR 43-89), with 6 items being reported in less than 4/18 of the studies.Interpretation - Most current predictive ML models are not externally validated. The 18 available external validation studies were characterized by incomplete reporting of performance measures, limiting a transparent examination of model performance. Further prospective studies are needed to validate or refute the myriad of predictive ML models in orthopedics while adhering to existing guidelines. This ensures clinicians can take full advantage of validated and clinically implementable ML decision tools.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/17453674.2021.1910448DOI Listing
April 2021

Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting.

J Orthop Res 2021 Mar 18. Epub 2021 Mar 18.

Orthopedic Oncology Service, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Machine learning (ML) studies are becoming increasingly popular in orthopedics but lack a critically appraisal of their adherence to peer-reviewed guidelines. The objective of this review was to (1) evaluate quality and transparent reporting of ML prediction models in orthopedic surgery based on the transparent reporting of multivariable prediction models for individual prognosis or diagnosis (TRIPOD), and (2) assess risk of bias with the Prediction model Risk Of Bias ASsessment Tool. A systematic review was performed to identify all ML prediction studies published in orthopedic surgery through June 18th, 2020. After screening 7138 studies, 59 studies met the study criteria and were included. Two reviewers independently extracted data and discrepancies were resolved by discussion with at least two additional reviewers present. Across all studies, the overall median completeness for the TRIPOD checklist was 53% (interquartile range 47%-60%). The overall risk of bias was low in 44% (n = 26), high in 41% (n = 24), and unclear in 15% (n = 9). High overall risk of bias was driven by incomplete reporting of performance measures, inadequate handling of missing data, and use of small datasets with inadequate outcome numbers. Although the number of ML studies in orthopedic surgery is increasing rapidly, over 40% of the existing models are at high risk of bias. Furthermore, over half incompletely reported their methods and/or performance measures. Until these issues are adequately addressed to give patients and providers trust in ML models, a considerable gap remains between the development of ML prediction models and their implementation in orthopedic practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.25036DOI Listing
March 2021

Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports.

Acta Oncol 2020 Dec 12;59(12):1455-1460. Epub 2020 Sep 12.

Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital - Harvard Medical School, Boston, MA, USA.

Background: The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. However, processing this rich resource of data for clinical and research purposes, depends on labor-intensive and potentially error-prone manual review. The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.

Material And Methods: Bone scintigraphy reports of patients undergoing surgery for bone metastases were labeled each by three independent reviewers using a binary classification (single metastasis versus two or more metastases) to establish a ground truth. A stratified 80:20 split was used to develop and test an extreme-gradient boosting supervised machine learning NLP algorithm.

Results: A total of 704 free-text bone scintigraphy reports from 704 patients were included in this study and 617 (88%) had multiple bone metastases. In the independent test set ( = 141) not used for model development, the NLP algorithm achieved an 0.97 AUC-ROC (95% confidence interval [CI], 0.92-0.99) for classification of multiple bone metastases and an 0.99 AUC-PRC (95% CI, 0.99-0.99). At a threshold of 0.90, NLP algorithm correctly identified multiple bone metastases in 117 of the 124 who had multiple bone metastases in the testing cohort (sensitivity 0.94) and yielded 3 false positives (specificity 0.82). At the same threshold, the NLP algorithm had a positive predictive value of 0.97 and F1-score of 0.96.

Conclusions: NLP has the potential to automate clinical data extraction from free text radiology notes in orthopedics, thereby optimizing the speed, accuracy, and consistency of clinical chart review. Pending external validation, the NLP algorithm developed in this study may be implemented as a means to aid researchers in tackling large amounts of data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/0284186X.2020.1819563DOI Listing
December 2020