Publications by authors named "Nayab Mahmood"

4 Publications

  • Page 1 of 1

Rapid and Sensitive Direct Detection and Identification of Poliovirus from Stool and Environmental Surveillance Samples by Use of Nanopore Sequencing.

J Clin Microbiol 2020 Aug 24;58(9). Epub 2020 Aug 24.

Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.

Global poliovirus surveillance involves virus isolation from stool and environmental samples, intratypic differential (ITD) by PCR, and sequencing of the VP1 region to distinguish vaccine (Sabin), vaccine-derived, and wild-type polioviruses and to ensure an appropriate response. This cell culture algorithm takes 2 to 3 weeks on average between sample receipt and sequencing. Direct detection of viral RNA using PCR allows faster detection but has traditionally faced challenges related to poor sensitivity and difficulties in sequencing common samples containing poliovirus and enterovirus mixtures. We present a nested PCR and nanopore sequencing protocol that allows rapid (<3 days) and sensitive direct detection and sequencing of polioviruses in stool and environmental samples. We developed barcoded primers and a real-time analysis platform that generate accurate VP1 consensus sequences from multiplexed samples. The sensitivity and specificity of our protocol compared with those of cell culture were 90.9% (95% confidence interval, 75.7% to 98.1%) and 99.2% (95.5% to 100.0%) for wild-type 1 poliovirus, 92.5% (79.6% to 98.4%) and 98.7% (95.4% to 99.8%) for vaccine and vaccine-derived serotype 2 poliovirus, and 88.3% (81.2% to 93.5%) and 93.2% (88.6% to 96.3%) for Sabin 1 and 3 poliovirus alone or in mixtures when tested on 155 stool samples in Pakistan. Variant analysis of sequencing reads also allowed the identification of polioviruses and enteroviruses in artificial mixtures and was able to distinguish complex mixtures of polioviruses in environmental samples. The median identity of consensus nanopore sequences with Sanger or Illumina sequences from the same samples was >99.9%. This novel method shows promise as a faster and safer alternative to cell culture for the detection and real-time sequencing of polioviruses in stool and environmental samples.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2020

Genetic Epidemiology Reveals 3 Chronic Reservoir Areas With Recurrent Population Mobility Challenging Poliovirus Eradication in Pakistan.

Clin Infect Dis 2020 Oct;71(7):e58-e67

Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan.

Background: Pakistan is among 3 countries endemic for wild poliovirus type 1 (WPV1) circulation that are still struggling for eradication of poliomyelitis. Active clinical and environmental surveillance with meticulous laboratory investigations provide insights into poliovirus transmission patterns and genomic diversity to inform decisions for strategic operations required to achieve eradication.

Methods: We analyzed epidemiological and virological data to comprehend the current epidemiological status of WPV1 in Pakistan during 2015-2017. Stool specimens of patients with acute flaccid paralysis (AFP) and sewage samples collected from 60 environmental sites were tested. Viral culturing, intratypic differentiation by real-time polymerase chain reaction, and nucleic acid sequencing of the VP1 region of the poliovirus genome to determine genetic relatedness among WPV1 strains were applied.

Results: Poliovirus isolates were grouped into 11 distinct clusters, which had ≥95% nucleotide homology in the VP1 coding region. Most of the poliovirus burden was shared by 3 major reservoirs: Karachi, Peshawar, and Quetta block (64.2% in 2015, 75.4% in 2016, and 76.7% in 2017).

Conclusions: Environmental surveillance reveals importations and pockets of unimmunized children that dictate intensive target mop-up campaigns to contain poliovirus transmission. A decrease in the number of orphan isolates reflects effective combination of AFP and environmental surveillance in Pakistan. The genetic data reflect sustained transmission within reservoir areas, further expanded by periodic importations to areas of high immunity reflected by immediate termination of imported viruses. Improved immunization coverage with high-quality surveillance is vital for global certification of polio eradication.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
October 2020

Molecular detection and characterization of respiratory syncytial virus B genotypes circulating in Pakistani children.

Infect Genet Evol 2017 01 28;47:125-131. Epub 2016 Nov 28.

Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 44000, Pakistan. Electronic address:

Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory tract infections in young children, but very little is known about its epidemiology and circulating genotypes in Pakistan. This study analyzed the epidemiological and molecular characteristics of RSV B genotypes in Pakistani children below 5years with acute respiratory tract infections (ARIs) during three consecutive winter seasons from 2010 to 2013. A total of 1941 samples were analyzed for RSV infection by real time PCR and 24% (472/1941) samples were found positive out of which 22.3% (105/472) were sub-typed as RSV-B. The frequency of outpatient cases was higher (62.5%; 295/472) as compared to hospitalized patients (37.5%; 177/472). Patient ages ranged from 2month to 5years with a mean age of 1.48±1.2 (years) and a median age of 1year. Children below one year made up the highest percentage of enrolled subjects and male to female ratio of RSVB positive cases was nearly equivalent (1:1.1). The most common clinical symptoms were cough (96%), fever (80%) and sore throat (50%). All Pak RSVB strains ascribed to the BA genotype showing 91.9-97.1% and 86.2-95.3% homology at the nucleotide and amino acid levels respectively in comparison to BA prototype strain. On phylogenetic analysis, three genotypes of Pakistan RSV B viruses were observed; BA-9 and BA-10 which have been reported previously from other regions, and a third novel genotype assigned as BA-13 which formed a distinct cluster with protein length of 319 AA and showed 9-11 unique AA substitutions. All the RSV B isolates had two potential N-glycosylation sites in HVR2 of G protein and with heavy O-glycosylation of serine and threonine residues (G scores of 0.5-0.7). This study highlights the diversity of RSVB viruses and the significance of RSV as a dominant viral etiologic agent of pediatric ARI. It also emphasizes the need for continued molecular surveillance for early detection of prevalent and newly emerging genotypes to understand epidemiology of RSV infections in various regions of Pakistan.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2017