Publications by authors named "Natasa Jovanov Milošević"

32 Publications

Developmental dynamics of the periventricular parietal crossroads of growing cortical pathways in the fetal brain - In vivo fetal MRI with histological correlation.

Neuroimage 2020 04 21;210:116553. Epub 2020 Jan 21.

Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria. Electronic address:

The periventricular crossroads have been described as transient structures of the fetal brain where major systems of developing fibers intersect. The triangular parietal crossroad constitutes one major crossroad region. By combining in vivo and post-mortem fetal MRI with histological and immunohistochemical methods, we aimed to characterize these structures. Data from 529 in vivo and 66 post-mortem MRI examinations of fetal brains between gestational weeks (GW) 18-39 were retrospectively reviewed. In each fetus, the area adjacent to the trigone of the lateral ventricles at the exit of the posterior limb of the internal capsule (PLIC) was assessed with respect to signal intensity, size, and shape on T2-weighted images. In addition, by using in vivo diffusion tensor imaging (DTI), the main fiber pathways that intersect in these areas were identified. In order to explain the in vivo features of the parietal crossroads (signal intensity and developmental profile), we analyzed 23 post-mortem fetal human brains, between 16 and ​40 GW of age, processed by histological and immunohistochemical methods. The parietal crossroads were triangular-shaped areas with the base in the continuity of the PLIC, adjacent to the germinal matrix and the trigone of the lateral ventricles, with the tip pointing toward the subplate. These areas appeared hyperintense to the subplate, and corresponded to a convergence zone of the developing external capsule, the PLIC, and the fronto-occipital association fibers. They were best detected between GW 25-26, and, at term, they became isointense to the adjacent structures. The immunohistochemical results showed a distinct cellular, fibrillar, and extracellular matrix arrangement in the parietal crossroads, depending on the stage of development, which influenced the MRI features. The parietal crossroads are transient, but important structures in white matter maturation and their damage may be indicative of a poor prognosis for a fetus with regard to neurological development. In addition, impairment of this region may explain the complex neurodevelopmental deficits in preterm infants with periventricular hypoxic/ischemic or inflammatory lesions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.116553DOI Listing
April 2020

TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities.

Am J Hum Genet 2019 12 14;105(6):1126-1147. Epub 2019 Nov 14.

Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands. Electronic address:

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.10.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904804PMC
December 2019

Somato-dendritic morphology and axon origin site specify von Economo neurons as a subclass of modified pyramidal neurons in the human anterior cingulate cortex.

J Anat 2019 09;235(3):651-669

Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.

Von Economo neurons (VENs) are modified pyramidal neurons characterized by an extremely elongated rod-shaped soma. They are abundant in layer V of the anterior cingulate cortex (ACC) and fronto-insular cortex (FI) of the human brain, and have long been described as a human-specific neuron type. Recently, VENs have been reported in the ACC of apes and the FI of macaque monkeys. The first description of the somato-dendritic morphology of VENs in the FI by Cajal in 1899 (Textura del Sistema Nervioso del Hombre y de los Vertebrados, Tomo II. Madrid: Nicolas Moya) strongly suggested that they were a unique neuron subtype with specific morphological features. It is surprising that a clarification of this extremely important observation has not yet been attempted, especially as possible misidentification of other oval or fusiform cells as VENs has become relevant in many recently published studies. Here, we analyzed sections of Brodmann area 24 (ACC) stained with rapid Golgi and Golgi-Cox in five adult human specimens, and confirmed Cajal's observations. In addition, we established a comprehensive morphological description of VENs. VENs have a distinct somato-dendritic morphology that allows their clear distinction from other modified pyramidal neurons. We established that VENs have a perpendicularly oriented, stick-shaped core part consisting of the cell body and two thick extensions - an apical and basal stem. The perpendicular length of the core part was 150-250 μm and the thickness was 10-21 μm. The core part was characterized by a lack of clear demarcation between the cell body and the two extensions. Numerous thin, spiny and horizontally oriented side dendrites arose from the cell body. The basal extension of the core part typically ended by giving numerous smaller dendrites with a brush-like branching pattern. The apical extension had a topology typical for apical dendrites of pyramidal neurons. The dendrites arising from the core part had a high dendritic spine density. The most distinct feature of VENs was the distant origin site of the axon, which arose from the ending of the basal extension, often having a common origin with a dendrite. Quantitative analysis found that VENs could be divided into two groups based on total dendritic length - small VENs with a peak total dendritic length of 1500-2500 μm and large VENs with a peak total dendritic length of 5000-6000 μm. Comparative morphological analysis of VENs and other oval and fusiform modified pyramidal neurons showed that on Nissl sections small VENs might be difficult to identify, and that oval and fusiform neurons could be misidentified as VENs. Our analysis of Golgi slides of Brodmann area 9 from a total of 32 adult human subjects revealed only one cell resembling VEN morphology. Thus, our data show that the numerous recent reports on the presence of VENs in non-primates in other layers and regions of the cortex need further confirmation by showing the dendritic and axonal morphology of these cells. In conclusion, our study provides a foundation for further comprehensive morphological and functional studies on VENs between different species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/joa.13068DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704249PMC
September 2019

Callosal septa express guidance cues and are paramedian guideposts for human corpus callosum development.

J Anat 2019 09 9;235(3):670-686. Epub 2019 May 9.

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.

The early development and growth of the corpus callosum are supported by several midline transient structures in mammals that include callosal septa (CS), which are present only in the second half of gestation in humans. Here we provide new data that support the guidance role of CS in corpus callosum development, derived from the analysis of 46 postmortem fetal brains, ranging in age from 16 to 40 post conception weeks (PCW). Using immunohistochemical methods, we show the expression pattern of guidance cues ephrinA4 and neogenin, extracellular protein fibronectin, as well as non-activated microglia in the CS. We found that the dynamic changes in expression of guidance cues, cellular and extracellular matrix constituents in the CS correlate well with the growth course of the corpus callosum at midsagittal level. The CS reach and maintain their developmental maximum between 20 and 26 PCW and can be visualized as hypointense structures in the ventral callosal portion with ex vivo (in vitro) T2-weighted 3T magnetic resonance imaging (MRI). The maximum of septal development overlaps with an increase in the callosal midsagittal area, whereas the slow, gradual resolution of CS coincides with a plateau of midsagittal callosal growth. The recognition of CS existence in human fetal brain and the ability to visualize them by ex vivoMRI attributes a potential diagnostic value to these transient structures, as advancement in imaging technologies will likely also enable in vivoMRI visualization of the CS in the near future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/joa.13011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704273PMC
September 2019

The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism.

Front Psychiatry 2019 14;10:122. Epub 2019 Mar 14.

Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.

The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpsyt.2019.00122DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426783PMC
March 2019

Histological and MRI Study of the Development of the Human Indusium Griseum.

Cereb Cortex 2019 12;29(11):4709-4724

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia.

To uncover the ontogenesis of the human indusium griseum (IG), 28 post-mortem fetal human brains, 12-40 postconceptional weeks (PCW) of age, and 4 adult brains were analyzed immunohistochemically and compared with post-mortem magnetic resonance imaging (MRI) of 28 fetal brains (14-41 PCW). The morphogenesis of the IG occurred between 12 and 15 PCW, transforming the bilateral IG primordia into a ribbon-like cortical lamina. The histogenetic transition of sub-laminated zones into the three-layered cortical organization occurred between 15 and 35 PCW, concomitantly with rapid cell differentiation that occurred from 18 to 28 PCW and the elaboration of neuronal connectivity during the entire second half of gestation. The increasing number of total cells and neurons in the IG at 25 and 35 PCW confirmed its continued differentiation throughout this period. High-field 3.0 T post-mortem MRI enabled visualization of the IG at the mid-fetal stage using T2-weighted sequences. In conclusion, the IG had a distinct histogenetic differentiation pattern than that of the neighboring intralimbic areas of the same ontogenetic origin, and did not show any signs of regression during the fetal period or postnatally, implying a functional role of the IG in the adult brain, which is yet to be disclosed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhz004DOI Listing
December 2019

Hippocampal expression of cell-adhesion glycoprotein neuroplastin is altered in Alzheimer's disease.

J Cell Mol Med 2019 02 28;23(2):1602-1607. Epub 2018 Nov 28.

School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.

Cell-adhesion glycoprotein neuroplastin (Np) is involved in the regulation of synaptic plasticity and balancing hippocampal excitatory/inhibitory inputs which aids in the process of associative memory formation and learning. Our recent findings show that neuroplastin expression in the adult human hippocampus is specifically associated with major hippocampal excitatory pathways and is related to neuronal calcium regulation. Here, we investigated the hippocampal expression of brain-specific neuroplastin isoform (Np65), its relationship with amyloid and tau pathology in Alzheimer's disease (AD), and potential involvement of neuroplastin in tissue response during the disease progression. Np65 expression and localization was analysed in six human hippocampi with confirmed AD neuropathology, and six age-/gender-matched control hippocampi by imunohistochemistry. In AD cases with shorter disease duration, the Np65 immunoreactivity was significantly increased in the dentate gyrus (DG), Cornu Ammonis 2/3 (CA2/3), and subiculum, with the highest level of Np expression being located on the dendrites of granule cells and subicular pyramidal neurons. Changes in the expression of neuroplastin in AD hippocampal areas seem to be related to the progression of disease. Our study suggests that cell-adhesion protein neuroplastin is involved in tissue reorganization and is a potential molecular marker of plasticity response in the early neurodegeneration process of AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.13998DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349345PMC
February 2019

Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration.

Sci Rep 2017 08 4;7(1):7273. Epub 2017 Aug 4.

Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany.

The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca ATPases (PMCAs), an essential regulator of the intracellular Ca concentration ([iCa]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn mice and increased [iCa] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-07839-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544750PMC
August 2017

Monoaminergic neuropathology in Alzheimer's disease.

Prog Neurobiol 2017 04 12;151:101-138. Epub 2016 Apr 12.

Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061605PMC
http://dx.doi.org/10.1016/j.pneurobio.2016.04.001DOI Listing
April 2017

Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies.

Biomolecules 2016 Jan 6;6(1). Epub 2016 Jan 6.

Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of the microtubule-associated protein tau in the form of filaments. Based on the biochemically diverse range of pathological tau proteins, a number of approaches have been proposed to develop new potential therapeutics. Here we discuss some of the most promising ones: inhibition of tau phosphorylation, proteolysis and aggregation, promotion of intra- and extracellular tau clearance, and stabilization of microtubules. We also emphasize the need to achieve a full understanding of the biological roles and post-translational modifications of normal tau, as well as the molecular events responsible for selective neuronal vulnerability to tau pathology and its propagation. It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom6010006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808800PMC
January 2016

Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain.

Cereb Cortex 2016 12 1;26(12):4574-4589. Epub 2015 Oct 1.

Croatian Institute for Brain Research

Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhv218DOI Listing
December 2016

Stathmin is enriched in the developing corticospinal tract.

Mol Cell Neurosci 2015 Nov 12;69:12-21. Epub 2015 Sep 12.

Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK. Electronic address:

Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2015.09.003DOI Listing
November 2015

Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

Brain Res 2015 Feb 4;1597:65-76. Epub 2014 Dec 4.

Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; Laboratory for Neurogenetics and Genetics of Development, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia. Electronic address:

The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2014.11.040DOI Listing
February 2015

Neural ECM in laminar organization and connectivity development in healthy and diseased human brain.

Prog Brain Res 2014 ;214:159-78

Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.

The neural extracellular matrix (ECM) provides a supportive framework for differentiating cells and their processes and regulates morphogenetic events by spatially and temporally relevant localization of signaling molecules and by direct signaling via receptor and/or coreceptor-mediated action. The embryonic human brain and fetal human brain contain large amounts and a diversity of extracellular matrix components, which are especially prominent in the transient subplate zone, in the crossroads of axonal pathways, at the developing cortical-white matter interface, and in the marginal zone. Perinatal and postnatal reorganizations of these tissue compartments extend into the second year of life. Developmental changes in the amount and composition of the extracellular matrix (as well as changes in fiber architectonics) are significant for plastic responses to damage and for changes in magnetic resonance imaging (MRI) signal intensity of the fetal and early postnatal human brain. In this chapter, we discuss the expression pattern of the major components of the fetal ECM of the human brain and the role they play during laminar and connectivity development in healthy brain and in the neurodevelopmental disorders. The aim of the chapter is to elucidate ECM-related developmental events as potential models of successful functional recovery after injury and to explore its relevance for diagnostic and therapeutic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-444-63486-3.00007-4DOI Listing
August 2015

Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates.

Front Neurol 2014 29;5:139. Epub 2014 Jul 29.

Croatian Institute for Brain Research, University of Zagreb School of Medicine , Zagreb , Croatia.

The developmental vulnerability of different classes of axonal pathways in preterm white matter is not known. We propose that laminar compartments of the developing cerebral wall serve as spatial framework for axonal growth and evaluate potential of anatomical landmarks for understanding reorganization of the cerebral wall after perinatal lesions. The 3-T MRI (in vivo) and histological analysis were performed in a series of cases ranging from 22 postconceptional weeks to 3 years. For the follow-up scans, three groups of children (control, normotypic, and preterms with lesions) were examined at the term equivalent age and after the first year of life. MRI and histological abnormalities were analyzed in the following compartments: (a) periventricular, with periventricular fiber system; (b) intermediate, with periventricular crossroads, sagittal strata, and centrum semiovale; (c) superficial, composed of gyral white matter, subplate, and cortical plate. Vulnerability of thalamocortical pathways within the crossroads and sagittal strata seems to be characteristic for early preterms, while vulnerability of long association pathways in the centrum semiovale seems to be predominant feature of late preterms. The structural indicator of the lesion of the long association pathways is the loss of delineation between centrum semiovale and subplate remnant, which is possible substrate of the diffuse periventricular leukomalacia. The enhanced difference in MR signal intensity of centrum semiovale and subplate remnant, observed in damaged children after first year, we interpret as structural plasticity of intact short cortico-cortical fibers, which grow postnatally through U-zones and enter the cortex through the subplate remnant. Our findings indicate that radial distribution of MRI signal abnormalities in the cerebral compartments may be related to lesion of different classes of axonal pathways and have prognostic value for predicting the likely outcome of prenatal and perinatal lesions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2014.00139DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114264PMC
August 2014

Spatio-temporal extension in site of origin for cortical calretinin neurons in primates.

Front Neuroanat 2014 26;8:50. Epub 2014 Jun 26.

Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia ; Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia.

The vast majority of cortical GABAergic neurons can be defined by parvalbumin, somatostatin or calretinin expression. In most mammalians, parvalbumin and somatostatin interneurons have constant proportions, each representing 5-7% of the total neuron number. In contrast, there is a threefold increase in the proportion of calretinin interneurons, which do not exceed 4% in rodents and reach 12% in higher order areas of primate cerebral cortex. In rodents, almost all parvalbumin and somatostatin interneurons originate from the medial part of the subpallial proliferative structure, the ganglionic eminence (GE), while almost all calretinin interneurons originate from its caudal part. The spatial pattern of cortical GABAergic neurons origin from the GE is preserved in the monkey and human brain. However, it could be expected that the evolution is changing developmental rules to enable considerable expansion of calretinin interneuron population. During the early fetal period in primates, cortical GABAergic neurons are almost entirely generated in the subpallium, as in rodents. Already at that time, the primate caudal ganglionic eminence (CGE) shows a relative increase in size and production of calretinin interneurons. During the second trimester of gestation, that is the main neurogenetic stage in primates without clear correlates found in rodents, the pallial production of cortical GABAergic neurons together with the extended persistence of the GE is observed. We propose that the CGE could be the main source of calretinin interneurons for the posterior and lateral cortical regions, but not for the frontal cortex. The associative granular frontal cortex represents around one third of the cortical surface and contains almost half of cortical calretinin interneurons. The majority of calretinin interneurons destined for the frontal cortex could be generated in the pallium, especially in the newly evolved outer subventricular zone that becomes the main pool of cortical progenitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnana.2014.00050DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072090PMC
July 2014

Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches.

Brain Struct Funct 2014 Jan 19;219(1):231-53. Epub 2012 Dec 19.

Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia,

We analyzed the developmental history of the subplate and related cellular compartments of the prenatal and early postnatal human cerebrum by combining postmortem histological analysis with in vivo MRI. Histological analysis was performed on 21 postmortem brains (age range: 26 postconceptional weeks to 6.5 years) using Nissl staining, AChE-histochemistry, PAS-Alcian blue histochemistry, Gallyas' silver impregnation, and immunocytochemistry for MAP2, synaptophysin, neurofilament, chondroitin sulfate, fibronectin, and myelin basic protein. The histological findings were correlated with in vivo MRI findings obtained in 30 age-matched fetuses, infants, and children. We analyzed developmental reorganization of major cellular (cell bodies, growing axons) and extracellular (extracellular matrix) components of the subplate and the developing cortex/white matter interface. We found that perinatal and postnatal reorganization of these tissue components is protracted (extending into the second year of life) and characterized by well-delineated, transient and previously undescribed structural and molecular changes at the cortex/white matter interface. The findings of this study are clinically relevant because they may inform and guide a proper interpretation of highly dynamic and hitherto puzzling changes of cortical thickness and cortical/white matter interface as described in current in vivo MRI studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-012-0496-0DOI Listing
January 2014

Neuroplastin expression in the hippocampus of mice lacking complex gangliosides.

J Mol Neurosci 2012 Sep 26;48(1):161-6. Epub 2012 May 26.

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia.

We report changes in neuroplastin gene and protein expression in the hippocampus of B4galnt1 null mice, which lacks complex ganglioside structures, compared with that of wild-type mice. Neuroplastin mRNA expression was significantly higher in the hippocampi of B4galnt1 null mice than in wild-type mice. Moreover, Western blot analysis shows increased neuroplastin protein levels of neuroplastin-55 isoform in B4galnt1 null hippocampal homogenates. Immunohistochemistry revealed a substantially different distribution of neuroplastin immunoreactivity in sagittal sections of the hippocampi derived from B4galnt1 null in comparison with those from wild-type mice. Most strikingly, B4galnt1 null mice had relatively little neuroplastin immunoreactivity in the pyramidal layer of CA1 and CA3, whereas wild-type mice had strong neuroplastin staining of pyramidal cells. Results of this study support the hypothesis that alterations of brain ganglioside expression influence the expression of neuroplastin. As both neuroplastin and gangliosides have important roles in synaptic transmission, synaptic plasticity, and neurite outgrowth, it will be of particular interest to unravel the molecular mechanisms underlying the relationship between ganglioside composition and neuroplastin transcript and protein expression in the mammalian nervous system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-012-9801-xDOI Listing
September 2012

Human fetal tau protein isoform: possibilities for Alzheimer's disease treatment.

Int J Biochem Cell Biol 2012 Aug 15;44(8):1290-4. Epub 2012 May 15.

Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia.

While early 1990s reports showed the phosphorylation pattern of fetal tau protein to be similar to that of tau in paired helical filaments (PHF) in Alzheimer's disease (AD), neither the molecular mechanisms of the transient developmental hyperphosphorylation of tau nor reactivation of the fetal plasticity due to re-expression of fetal protein kinases in the aging and AD human brain have been sufficiently investigated. Here, we summarize the current knowledge on fetal tau, adding new data on the specific patterns of tau protein and mRNA expression in the developing human brain as well as on change in tau phosphorylation in the perforant pathway after entorhinal cortex lesion in mice. As fetal tau isoform does not form PHF even in a highly phosphorylated state, understanding its expression and post-translational modifications represents an important avenue for future research towards the development of AD treatment and prevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2012.05.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572194PMC
August 2012

The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community.

Ann N Y Acad Sci 2011 May;1225 Suppl 1:E105-30

University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia.

The Zagreb Collection of developing and adult human brains was founded in 1974 by Ivica Kostović and consists of 1,278 developing and adult human brains, including 610 fetal, 317 children, and 359 adult brains. It is one of the largest collections of developing human brains. The collection serves as a key resource for many focused research projects and has led to several seminal contributions on mammalian cortical development, such as the discovery of the transient fetal subplate zone and of early bilaminar synaptogenesis in the embryonic and fetal human cerebral cortex, and the first description of growing afferent pathways in the human fetal telencephalon. The Zagreb Collection also serves as a core resource for ever-growing networks of international collaboration and represents the starting point for many young investigators who now pursue independent research careers at leading international institutions. The Zagreb Collection, however, remains underexploited owing to a lack of adequate funding in Croatia. Funding could establish an online catalog of the collection and modern virtual microscopy scanning methods to make the collection internationally more accessible.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2011.05993.xDOI Listing
May 2011

Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

J Anat 2010 Oct;217(4):381-99

University of Zagreb School of Medicine, Croatian Institute for Brain Research, Salata 12, Zagreb, Croatia.

In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-7580.2010.01284.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992415PMC
October 2010

Morphology, molecular phenotypes and distribution of neurons in developing human corpus callosum.

Eur J Neurosci 2010 Nov 16;32(9):1423-32. Epub 2010 Sep 16.

Croatian Institute for Brain Research, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.

The aim of this study was to investigate the morphology, molecular phenotypes, distribution and developmental history of interstitial neurons in the human corpus callosum, here defined as intracallosal neurons. We analysed 26 fetuses, three newborns, five infants and children, and eight adults [age range - 15 weeks postconception (PCW) to 59 years] by means of acetylcholinesterase (AChE) histochemistry and immunohistochemistry for neuron markers (MAP2, NeuN, NPY, calretinin and calbindin). We found a heterogeneous neuron population, positioned within the callosal trunk itself (aside from neurons present in the transient midline structures such as callosal sling, septa or subcallosal zone), which was most numerous during the second half of gestation and early postnatal years. We named these cells intracallosal neurons. At 15 PCW, the intracallosal neuron population consisted of poorly differentiated, small fusiform or bipolar, migratory-like MAP2- or calretinin-positive neurons which could be observed until mid-gestation. Later the population comprised morphologically diverse, predominantly well-differentiated MAP2-, NPY-, calbindin- and AChE-positive neurons. The morphological differentiation of intracallosal neurons culminated in the newborns and remained pronounced in infants and children. In the adult brain, the intracallosal neurons were found only sporadically, with small somata and poorly stained dendrites. Thus, intracallosal neurons form part of a transitory neuron population with a developmental peak contemporaneous to the critical period of callosal formation. Therefore, they may be involved in processes such as axon guiding or elongation, withdrawal of exuberant axons, fasciculation, or functional tuning, which occur at that time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2010.07400.xDOI Listing
November 2010

Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging.

J Anat 2010 Oct;217(4):400-17

Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, Croatia.

The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP-25 (SNAP-25-immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico-frontal pathways (external capsule, cerebral stalk-internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13-14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24-26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and 'waiting' compartments during the path-finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-7580.2010.01260.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992416PMC
October 2010

Growth of the human corpus callosum: modular and laminar morphogenetic zones.

Front Neuroanat 2009 9;3. Epub 2009 Jun 9.

Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia.

The purpose of this focused review is to present and discuss recent data on the changing organization of cerebral midline structures that support the growth and development of the largest commissure in humans, the corpus callosum. We will put an emphasis on the callosal growth during the period between 20 and 45 postconceptual weeks (PCW) and focus on the advantages of a correlated histological/magnetic resonance imaging (MRI) approach. The midline structures that mediate development of the corpus callosum in rodents, also mediate its early growth in humans. However, later phases of callosal growth in humans show additional medial transient structures: grooves made up of callosal septa and the subcallosal zone. These modular (septa) and laminar (subcallosal zone) structures enable the growth of axons along the ventral callosal tier after 18 PCW, during the rapid increase in size of the callosal midsagittal cross-section area. Glial fibrillary acidic protein positive cells, neurons, guidance molecule semaphorin3A in cells and extracellular matrix (ECM), and chondroitin sulfate proteoglycan in the ECM have been identified along the ventral callosal tier in the protruding septa and subcallosal zone. Postmortem MRI at 3 T can demonstrate transient structures based on higher water content in ECM, and give us the possibility to follow the growth of the corpus callosum in vivo, due to the characteristic MR signal. Knowledge about structural properties of midline morphogenetic structures may facilitate analysis of the development of interhemispheric connections in the normal and abnormal fetal human brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/neuro.05.006.2009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697006PMC
July 2011

Development of the fetal neural retina in vitro and in ectopic transplants in vivo.

Coll Antropol 2008 Mar;32(1):201-7

Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.

Investigation of the developmental potential of immature tissues is important for novel approaches to human regenerative medicine. Development of the fetal neural retina has therefore been investigated in two experimental systems. Retinas were microsurgically isolated from 20-days-old rat fetuses and cultivated in vitro for 12 days or transplanted in vivo under the kidney capsule of adult males for as long as 6 months. Shedding of the photoreceptor outer segment which is a process occurring at the terminal stage of photoreceptor differentiation was observed in culture by transmission electron microscopy (TEM). In transplants, no photoreceptors were found although markers of terminal neural and glial differentiation (e,g. synaptophysin, chromogranin and glial fibrilary acidic protein--GFAP) along with the molecules involved in the process of differentiation (guidance molecule semaphorin IIIA and chondroitin sulfate proteoglycan) were expressed. Semaphorin was differentially expressed being absent from older transplants. Proliferating cell nuclear antigen and nestin (marker of undifferentiated neural cells) were still weakly expressed even in six-months-old transplants. We could conclude that in both our experimental systems fetal neural retina proceeded to differentiate further on. However, even in long-term ectopic transplants a small population of cells still retained the potential for proliferation and has not yet reached the stage of terminal differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
March 2008

Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

Coll Antropol 2008 Jan;32 Suppl 1:161-9

Croatian Studies, University of Zagreb, Zagreb, Croatia.

Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.
View Article and Find Full Text PDF

Download full-text PDF

Source
January 2008

Subplate zone of the human brain: historical perspective and new concepts.

Coll Antropol 2008 Jan;32 Suppl 1:3-8

Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.

Subplate zone (SP) is prominent, transient laminar compartment of the human fetal cerebral wall. The SP develops around 13 and gradually disappears after 32-34 postovulatory weeks. The SP neurons can be found as late as nine postnatal months, while remnants of the SP neurons can be traced until adult age in the form of interstitial neurons of the gyral white matter. SP is composed of postmigratory and migratory neurons, growth cones, loosely arranged axons, dendrites, glial cell and synapses. The remarkable feature of the SP is the presence of large amount of extracellular matrix. This feature can be used for delineation of SP in magnetic resonance images (MRI) of both, in vivo and post mortem brains. The importance of SP as the main synaptic zone of the human fetal cortex is based on the rich input of ,waiting,< afferents from thalamus and cortex, during the crucial phase of cortical target area selection. SP increases during mammalian evolution and culminates in human brain concomitantly with increase in number and diversity of cortico-cortical fibers. The recent neurobiological evidence shows that SP is important site of spontaneous endogeneous activity, building a framework for development of cortical columnar organization. The SP which can be readily visualized on conventional and DTI (diffusion-tensor-imaging) MRI in vivo, today is in the focus of interest of pediatric neurology due to the following facts: (1) SP is the site of early neural activity, (2) SP is the major substrate for functional plasticity, and (3) selective vulnerability of SP may lead to cognitive impairment.
View Article and Find Full Text PDF

Download full-text PDF

Source
January 2008

Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy.

Acta Neuropathol 2008 Mar 13;115(3):313-26. Epub 2007 Dec 13.

Department of Neuroscience, School of Medicine, Croatian Institute for Brain Research, Medical School Zagreb, Zagreb University, Salata 12, 10000 Zagreb, Croatia.

The role of heterotopic (migratory) motoneurons (HMN) in the pathogenesis of spinal muscular atrophy (SMA) is still controversial. We examined the occurrence and amount of HMN in spinal cord tissue from eight children with SMA (six with SMA-I and two with SMA-II). All affected subjects were carrying a homozygous deletion of exon 7 in the SMN1 gene. Unlike controls, virtually free from HMN, all SMA subjects showed a significant number of HMN at all levels of the spinal cord. Heterotopic neurons were hyperchromatic, located mostly in the ventral white matter and had no axon or dendrites. More than half of the HMN were very undifferentiated, as judged from their lack of immunoreactivity for NeuN and MAP2 proteins. Small numbers of more differentiated heterotopic neurons were also found in the dorsal and lateral white matter region. As confirmed by ultrastructural analysis, in situ end labeling (ISEL) and CD68 immunoreactivity, HMN in the ventral outflow were found to have no synapses, to activate microglial cells, and to eventually die by necrosis. An unbiased quantitative analysis showed a significant negative correlation between age of SMA subjects (a reflection of the clinical severity) and the number of HMN. Subjects who died at older ages had increased number of GFAP-positive astrocytes. Complementing our previous report on motoneuron apoptosis within the ventral horns in SMA, we now propose that abnormal migration, differentiation, and lack of axonal outgrowth may induce motoneuron apoptosis predominantly during early stages, whereas a slower necrosis-like cell death of displaced motoneurons which "escaped" apoptosis characterizes later stages of SMA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-007-0327-1DOI Listing
March 2008

The development of cerebral connections during the first 20-45 weeks' gestation.

Semin Fetal Neonatal Med 2006 Dec 7;11(6):415-22. Epub 2006 Sep 7.

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia.

We have correlated data on neuroanatomical organization and magnetic resonance imaging of transient fetal zones shown to contain connectivity elements (growing axons, synapses, dendrites). In the fetal phase, afferent fibres 'wait' within the subplate zone which is the most prominent lamina on histological and magnetic resonance images and is a substrate of endogenous neuronal activity. In early preterm the thalamocortical afferents accumulate within the superficial subplate and grow into cortical plate developing synapses. In late preterm, the resolution of the subplate and growth of cortico-cortical fibres into the cortical plate occur simultaneously with gyration. Both preterm phases characterize the coexistence of endogenous and sensory-driven circuitries and occurrence of the transient electrical phenomena. In neonates, the long cortico-cortical pathways stop growth, and the main histogenetic events are an elaboration of intracortical circuitry and synaptogenesis. In conclusion, the growth of the axonal pathways preterm explains their vulnerability and plasticity. In neonates the vulnerability is related to the intracortical circuitry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.siny.2006.07.001DOI Listing
December 2006