Publications by authors named "Nataniel J Mandelberg"

4 Publications

  • Page 1 of 1

Allergy Considerations in Implanted Neuromodulation Devices.

Neuromodulation 2021 Jan 11. Epub 2021 Jan 11.

Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Objectives: Allergic reactions are rare and poorly understood complications of neuromodulation device implantation. There are currently no guidelines for management of allergic reactions to these devices and their components. Here we review the published cases of allergic reactions to implanted neuromodulatory devices and leverage the experiences of other specialties that deal with similar complications to formulate recommendations for prevention and management.

Materials And Methods: A review and assessment of the literature.

Results: Allergic reactions to a number of implantable devices have been observed and published. In dentistry and orthopedics, metals such as nickel are the most frequent cause of allergic reactions. In interventional cardiology, where devices closely resemble neuromodulatory devices, titanium, silicone, and polyurethanes are the most common causes of allergic reactions. In neurosurgery, allergic reactions to implantable neuromodulatory devices are rare, and we summarize 13 cases published to date. Such allergic reactions generally present as local dermatitis, erythema, and pruritus, which can be difficult to distinguish from surgical site infection. In one published case, symptoms resolved with corticosteroid treatment, but all other cases required explantation. The successful reimplantation with a modified device was reported in some cases.

Conclusions: Patients should be screened for a personal history of contact allergy before implantation procedures. A multidisciplinary approach to suspected cases of postoperative allergic reactions involving collaboration between neurosurgeons and other implanting physicians, dermatologists or allergists, and device manufacturers is recommended. In cases where an allergic reaction is suspected, an infectious etiology should be ruled out first. Clinical suspicion can then be supported with the use of patch testing, interpreted by an experienced dermatologist or allergist. If patch testing supports an allergic etiology, the implanting physician and the device manufacturer can work together to modify the device for safe reimplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ner.13332DOI Listing
January 2021

Neuronal Inactivity Co-opts LTP Machinery to Drive Potassium Channel Splicing and Homeostatic Spike Widening.

Cell 2020 06 2;181(7):1547-1565.e15. Epub 2020 Jun 2.

Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA. Electronic address:

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca-permeable AMPA receptor upregulation, L-type Ca channel activation, enhanced spine Ca transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.05.013DOI Listing
June 2020

Weakening synapses to cull memories.

Science 2019 01;363(6422):31-32

Langone Medical Center, New York University, New York, NY, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaw1675DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6552659PMC
January 2019

Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory.

Nat Commun 2018 06 22;9(1):2451. Epub 2018 Jun 22.

Institute of Neuroscience, and Department of Neurology of Second Affiliated Hospital, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Learning and memory depend on neuronal plasticity originating at the synapse and requiring nuclear gene expression to persist. However, how synapse-to-nucleus communication supports long-term plasticity and behavior has remained elusive. Among cytonuclear signaling proteins, γCaMKII stands out in its ability to rapidly shuttle Ca/CaM to the nucleus and thus activate CREB-dependent transcription. Here we show that elimination of γCaMKII prevents activity-dependent expression of key genes (BDNF, c-Fos, Arc), inhibits persistent synaptic strengthening, and impairs spatial memory in vivo. Deletion of γCaMKII in adult excitatory neurons exerts similar effects. A point mutation in γCaMKII, previously uncovered in a case of intellectual disability, selectively disrupts CaM sequestration and CaM shuttling. Remarkably, this mutation is sufficient to disrupt gene expression and spatial learning in vivo. Thus, this specific form of cytonuclear signaling plays a key role in learning and memory and contributes to neuropsychiatric disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-04705-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015085PMC
June 2018