Publications by authors named "Natalya Ivanushkina"

2 Publications

  • Page 1 of 1

Austalides V and W, new meroterpenoids from the fungus Aspergillus ustus and their antitumor activities.

Bioorg Med Chem Lett 2019 11 4;29(22):126708. Epub 2019 Oct 4.

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, FSBIS FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, Pushchino 142290, Russian Federation.

Two new austalide meroterpenoids, named austalides V and W (1 and 2), were isolated from the fungus Aspergillus ustus VKM F-4692. Their structures were elucidated by extensive spectroscopic analysis and by comparison with related known compounds. The main structural feature of both compounds is a tetrahydrofuranyl ring (G), a structural fragment, first found in austalides. Austalides V (1) and W (2) were able to inhibit the propagation of prostate and bladder cancer cells; this biologic activity is possibly related to the inhibition of a number of key pathways regulating cell growth and migration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2019.126708DOI Listing
November 2019

Ancient fungi in Antarctic permafrost environments.

FEMS Microbiol Ecol 2012 Nov 23;82(2):501-9. Epub 2012 Jul 23.

All-Russian Collection of Microorganisms (VKM), G K Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.

Filamentous fungi in 36 samples of Antarctic permafrost sediments were studied. The samples collected during the Russian Antarctic expedition of 2007-2009 within the framework of the Antarctic Permafrost Age Project (ANTPAGE) were recovered from different depths in ice-free oases located along the perimeter of the continent. Fungal diversity was determined by conventional microbiological techniques combined with a culture-independent method based on the analysis of internal transcribed spacer (ITS2) sequences in total DNA of the samples. The study revealed a rather low fungal population density in permafrost, although the diversity found was appreciable, representing more than 26 genera. Comparison of the data obtained by different techniques showed that the culture-independent method enabled the detection of ascomycetous and basidiomycetous fungi not found by culturing. The molecular method failed to detect members of the genera Penicillium and Cladosporium that possess small-sized spores known to have a high resistance to environmental changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2012.01442.xDOI Listing
November 2012
-->