Publications by authors named "Nadim W Alkharouf"

33 Publications

Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines.

PLoS One 2020 4;15(11):e0241678. Epub 2020 Nov 4.

Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America.

Glycine max has 32 mitogen activated protein kinases (MAPKs), nine of them exhibiting defense functions (defense MAPKs) to the plant parasitic nematode Heterodera glycines. RNA seq analyses of transgenic G. max lines overexpressing (OE) each defense MAPK has led to the identification of 309 genes that are increased in their relative transcript abundance by all 9 defense MAPKs. Here, 71 of those genes are shown to also have measurable amounts of transcript in H. glycines-induced nurse cells (syncytia) produced in the root that are undergoing a defense response. The 71 genes have been grouped into 7 types, based on their expression profile. Among the 71 genes are 8 putatively-secreted proteins that include a galactose mutarotase-like protein, pollen Ole e 1 allergen and extensin protein, endomembrane protein 70 protein, O-glycosyl hydrolase 17 protein, glycosyl hydrolase 32 protein, FASCICLIN-like arabinogalactan protein 17 precursor, secreted peroxidase and a pathogenesis-related thaumatin protein. Functional transgenic analyses of all 8 of these candidate defense genes that employ their overexpression and RNA interference (RNAi) demonstrate they have a role in defense. Overexpression experiments that increase the relative transcript abundance of the candidate defense gene reduces the ability that the plant parasitic nematode Heterodera glycines has in completing its life cycle while, in contrast, RNAi of these genes leads to an increase in parasitism. The results provide a genomic analysis of the importance of MAPK signaling in relation to the secretion apparatus during the defense process defense in the G. max-H. glycines pathosystem and identify additional targets for future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241678PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641413PMC
January 2021

Exocyst components promote an incompatible interaction between Glycine max (soybean) and Heterodera glycines (the soybean cyst nematode).

Sci Rep 2020 09 14;10(1):15003. Epub 2020 Sep 14.

Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.

Vesicle and target membrane fusion involves tethering, docking and fusion. The GTPase SECRETORY4 (SEC4) positions the exocyst complex during vesicle membrane tethering, facilitating docking and fusion. Glycine max (soybean) Sec4 functions in the root during its defense against the parasitic nematode Heterodera glycines as it attempts to develop a multinucleate nurse cell (syncytium) serving to nourish the nematode over its 30-day life cycle. Results indicate that other tethering proteins are also important for defense. The G. max exocyst is encoded by 61 genes: 5 EXOC1 (Sec3), 2 EXOC2 (Sec5), 5 EXOC3 (Sec6), 2 EXOC4 (Sec8), 2 EXOC5 (Sec10) 6 EXOC6 (Sec15), 31 EXOC7 (Exo70) and 8 EXOC8 (Exo84) genes. At least one member of each gene family is expressed within the syncytium during the defense response. Syncytium-expressed exocyst genes function in defense while some are under transcriptional regulation by mitogen-activated protein kinases (MAPKs). The exocyst component EXOC7-H4-1 is not expressed within the syncytium but functions in defense and is under MAPK regulation. The tethering stage of vesicle transport has been demonstrated to play an important role in defense in the G. max-H. glycines pathosystem, with some of the spatially and temporally regulated exocyst components under transcriptional control by MAPKs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-72126-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490361PMC
September 2020

MAPKDB: A MAP kinase database for signal transduction element identification.

Bioinformation 2019 15;15(5):338-341. Epub 2018 May 15.

Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.

The mitogen activated protein kinase (MAPK) cascade is a central signal transduction platform, ubiquitous within the eukaryotes. MAPKs function prominently in different essential cellular processes such as proliferation, differentiation, survival and defense to pathogen attack. The 32 MAPKs of Glycine max (soybean) have been examined functionally to determine if they have any defense role, focusing in on infection by the plant-parasitic nematode Heterodera glycines. Of these 32 MAPKs, 9 have been shown to have a defense function. Hence, the Mitogen Activated Protein Kinase database (MAPKDB) has been developed to assist in such research. The MAPKDB allows users to search the annotations with sequence data for G. max transgenic lines undergoing overexpression (OE) or RNA interference (RNAi) of its defense map kinases. These defense MAPKs include map kinase 2 (MPK2), MPK3, MPK4, MPK5, MPK6, MPK13, MPK16, and MPK20. The database also contains data analysis information for each sample that helps to detect the differential expression of the genes identified within these samples. The database also contains data for each sample that helps to detect the differential expression of the genes identified within these samples. The database has been developed to manage G. max MAPK sequences with sequence alignment for 18 different samples along with two additional OE and RNAi control experiments for a total of 20.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630015338DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589469PMC
May 2018

Analysis of the genome sequence of Phomopsis longicolla: a fungal pathogen causing Phomopsis seed decay in soybean.

BMC Genomics 2017 Sep 5;18(1):688. Epub 2017 Sep 5.

USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville Agriculture Research Center, Beltsville, MD, 20705, USA.

Background: Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understand the mechanism of the disease development, the genome of an isolate, MSPL10-6, from Mississippi, USA was sequenced, de novo assembled, and analyzed.

Results: The genome of MSPL 10-6 was estimated to be approximately 62 Mb in size with an overall G + C content of 48.6%. Of 16,597 predicted genes, 9866 genes (59.45%) had significant matches to genes in the NCBI nr database, while 18.01% of them did not link to any gene ontology classification, and 9.64% of genes did not significantly match any known genes. Analysis of the 1221 putative genes that encoded carbohydrate-activated enzymes (CAZys) indicated that 715 genes belong to three classes of CAZy that have a direct role in degrading plant cell walls. A novel fungal ulvan lyase (PL24; EC 4.2.2.-) was identified. Approximately 12.7% of the P. longicolla genome consists of repetitive elements. A total of 510 potentially horizontally transferred genes were identified. They appeared to originate from 22 other fungi, 26 eubacteria and 5 archaebacteria.

Conclusions: The genome of the P. longicolla isolate MSPL10-6 represented the first reported genome sequence in the fungal Diaporthe-Phomopsis complex causing soybean diseases. The genome contained a number of Pfams not described previously. Information obtained from this study enhances our knowledge about this seed-borne pathogen and will facilitate further research on the genomic basis and pathogenicity mechanism of P. longicolla and aids in development of improved strategies for efficient management of Phomopsis seed decay in soybean.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-017-4075-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584002PMC
September 2017

A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6).

Bioinformation 2016 26;12(4):233-236. Epub 2016 Jul 26.

Department of Computer and Information Sciences, Towson University, MD 21252, USA.

Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen.

Availability: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630012233DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290664PMC
July 2016

Re-annotation of the woodland strawberry (Fragaria vesca) genome.

BMC Genomics 2015 Jan 27;16:29. Epub 2015 Jan 27.

Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, Maryland, 21252, USA.

Background: Fragaria vesca is a low-growing, small-fruited diploid strawberry species commonly called woodland strawberry. It is native to temperate regions of Eurasia and North America and while it produces edible fruits, it is most highly useful as an experimental perennial plant system that can serve as a model for the agriculturally important Rosaceae family. A draft of the F. vesca genome sequence was published in 2011 [Nat Genet 43:223,2011]. The first generation annotation (version 1.1) were developed using GeneMark-ES+[Nuc Acids Res 33:6494,2005]which is a self-training gene prediction tool that relies primarily on the combination of ab initio predictions with mapping high confidence ESTs in addition to mapping gene deserts from transposable elements. Based on over 25 different tissue transcriptomes, we have revised the F. vesca genome annotation, thereby providing several improvements over version 1.1.

Results: The new annotation, which was achieved using Maker, describes many more predicted protein coding genes compared to the GeneMark generated annotation that is currently hosted at the Genome Database for Rosaceae ( http://www.rosaceae.org/ ). Our new annotation also results in an increase in the overall total coding length, and the number of coding regions found. The total number of gene predictions that do not overlap with the previous annotations is 2286, most of which were found to be homologous to other plant genes. We have experimentally verified one of the new gene model predictions to validate our results.

Conclusions: Using the RNA-Seq transcriptome sequences from 25 diverse tissue types, the re-annotation pipeline improved existing annotations by increasing the annotation accuracy based on extensive transcriptome data. It uncovered new genes, added exons to current genes, and extended or merged exons. This complete genome re-annotation will significantly benefit functional genomic studies of the strawberry and other members of the Rosaceae.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-015-1221-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318131PMC
January 2015

SoyProLow: A protein database enriched in low abundant soybean proteins.

Bioinformation 2014 30;10(9):599-601. Epub 2014 Sep 30.

USDA-ARS, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.

Unlabelled: Soybeans are an important legume crop that contain 2 major storage proteins, β-conglycinin and glycinin, which account about 70- 80% of total seed proteins. These abundant proteins hinder the isolation and characterization of several low abundant proteins in soybean seeds. Several protein extraction methodologies were developed in our laboratory to decrease these abundant storage proteins in seed extracts and to also decrease the amount of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), which is normally very abundant in leaf extracts. One of the extraction methodologies used 40% isopropanol and was more effective in depleting soybean storage proteins and enhancing low abundant seed proteins than similar methods using 10-80% isopropanol. Extractions performed with 40% isopropanol decreased the amount of storage proteins and revealed 107 low abundant proteins when using the combined approaches of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and Mass Spectrometry (MS). The separation of proteins was achieved by iso-electric focusing (IEF) and 2D-PAGE. The proteins were analyzed with MS techniques to provide amino acid sequence. The proteins were identified by comparing their amino acid sequences with those in different databases including NCBI-non redundant, UniprotKB and MSDB databases. In this investigation, previously published results on low abundant soybean seed proteins were used to create an online database (SoyProLow) to provide a data repository that can be used as a reference to identify and characterize low abundance proteins. This database is freely accessible to individuals using similar techniques and can be for the subsequent genetic manipulation to produce value added soybean traits. An intuitive user interface based on dynamic HTML enables users to browse the network and the profiles of the low abundant proteins.

Availability: http://bioinformatics.towson.edu/Soybean_low_abundance_proteins_2D_Gel_DB/Gel1.aspx.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630010599DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209371PMC
October 2014

SCNProDB: A database for the identification of soybean cyst nematode proteins.

Bioinformation 2014 30;10(6):387-9. Epub 2014 Jun 30.

USDA-ARS, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.

Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean around the world. Crop rotation and resistant cultivars are used to mitigate the damage of SCN, but these approaches are not completely successful because of the varied SCN populations. Thus, the limitations of these practices with soybean dictate investigation of other avenues of protection of soybean against SCN, perhaps through genetically engineering of broad resistance to SCN. For better understanding of the consequences of genetic manipulation, elucidation of SCN protein composition at the subunit level is necessary. We have conducted studies to determine the composition of SCN proteins using a proteomics approach in our laboratory using twodimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate SCN proteins and to characterize the proteins further using mass spectrometry. Our analysis resulted in the identification of several hundred proteins. In this investigation, we developed a web based database (SCNProDB) containing protein information obtained from our previous published studies. This database will be useful to scientists who wish to develop SCN resistant soybean varieties through genetic manipulation and breeding efforts. The database is freely accessible from: http://bioinformatics.towson.edu/Soybean_SCN_proteins_2D_Gel_DB/Gel1.aspx.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630010387DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110433PMC
August 2014

SGR: an online genomic resource for the woodland strawberry.

BMC Plant Biol 2013 Dec 23;13:223. Epub 2013 Dec 23.

Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, MD 21252, USA.

Background: Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system and an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. ×ananassa), and the extant genome exhibits synteny with other commercially important members of the Rosaceae family such as apple and peach. To provide a molecular description of floral organ and fruit development at the resolution of specific tissues and cell types, RNAs from flowers and early developmental stage fruit tissues of the inbred F. vesca line YW5AF7 were extracted and the resulting cDNA libraries sequenced using an Illumina HiSeq2000. To enable easy access as well as mining of this two-dimensional (stage and tissue) transcriptome dataset, a web-based database, the Strawberry Genomic Resource (SGR), was developed.

Description: SGR is a web accessible database that contains sample description, sample statistics, gene annotation, and gene expression analysis. This information can be accessed publicly from a web-based interface at http://bioinformatics.towson.edu/strawberry/Default.aspx. The SGR website provides user friendly search and browse capabilities for all the data stored in the database. Users are able to search for genes using a gene ID or description or obtain differentially expressed genes by entering different comparison parameters. Search results can be downloaded in a tabular format compatible with Microsoft excel application. Aligned reads to individual genes and exon/intron structures are displayed using the genome browser, facilitating gene re-annotation by individual users.

Conclusions: The SGR database was developed to facilitate dissemination and data mining of extensive floral and fruit transcriptome data in the woodland strawberry. It enables users to mine the data in different ways to study different pathways or biological processes during reproductive development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2229-13-223DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878773PMC
December 2013

BBGD454: A database for transcriptome analysis of blueberry using 454 sequences.

Bioinformation 2013 16;9(17):883-6. Epub 2013 Oct 16.

Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA.

Unlabelled: Blueberry is an economically and nutritionally important small fruit crop, native to North America. As with many crops, extreme low temperature can affect blueberry crop yield negatively and cause major losses to growers. For this reason, blueberry breeding programs have focused on developing improved cultivars with broader climatic adaptation. To help achieve this goal, the blueberry genomic database (BBGD454) was developed to provide the research community with valuable resources to identify genes that play an important role in flower bud and fruit development, cold acclimation and chilling accumulation in blueberry. The database was developed using SQLServer2008 to house 454 transcript sequences, annotations and gene expression profiles of blueberry genes. BBGD454 can be accessed publically from a web-based interface; this website provides search and browse functionalities to allow scientists to access and search the data in order to correlate gene expression with gene function in different stages of blueberry fruit ripening, at different stages of cold acclimation of flower buds, and in leaves.

Availability: It can be accessed from http://bioinformatics.towson.edu/BBGD454/
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630009883DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819576PMC
November 2013

Analysis of Phakopsora pachyrhizi transcript abundance in critical pathways at four time-points during infection of a susceptible soybean cultivar using deep sequencing.

BMC Genomics 2013 Sep 11;14:614. Epub 2013 Sep 11.

Soybean Genomics & Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA.

Background: Phakopsora pachyrhizi, the causal agent responsible for soybean rust, is among the top hundred most virulent plant pathogens and can cause soybean yield losses of up to 80% when appropriate conditions are met. We used mRNA-Seq by Illumina to analyze pathogen transcript abundance at 15 seconds (s), 7 hours (h), 48 h, and 10 days (d) after inoculation (ai) of susceptible soybean leaves with P. pachyrhizi to gain new insights into transcript abundance in soybean and the pathogen at specific time-points during the infection including the uredinial stage.

Results: Over three million five hundred thousand sequences were obtained for each time-point. Energy, nucleotide metabolism, and protein synthesis are major priorities for the fungus during infection and development as indicated by our transcript abundance studies. At all time-points, energy production is a necessity for P. pachyrhizi, as indicated by expression of many transcripts encoding enzymes involved in oxidative phosphorylation and carbohydrate metabolism (glycolysis, glyoxylate and dicarboxylate, pentose phosphate, pyruvate). However, at 15 sai, transcripts encoding enzymes involved in ATP production were highly abundant in order to provide enough energy for the spore to germinate, as observed by the expression of many transcripts encoding proteins involved in electron transport. At this early time-point, transcripts encoding proteins involved in RNA synthesis were also highly abundant, more so than transcripts encoding genes involved in DNA and protein synthesis. At 7 hai, shortly after germination during tube elongation and penetration, transcripts encoding enzymes involved in deoxyribonucleotide and DNA synthesis were highly abundant. At 48 hai, transcripts encoding enzymes involved in amino acid metabolism were highly abundant to provide for increased protein synthesis during haustoria maturation. During sporulation at 10 dai, the fungus still required carbohydrate metabolism, but there also was increased expression of transcripts encoding enzymes involved in fatty acid metabolism.

Conclusion: This information provides insight into molecular events and their timing throughout the life cycle of the P. pachyrhizi, and it may be useful in the development of new methods of broadening resistance of soybean to soybean rust.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-14-614DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847679PMC
September 2013

SoyProDB: A database for the identification of soybean seed proteins.

Bioinformation 2013 6;9(3):165-7. Epub 2013 Feb 6.

Department of computer and information sciences, Towson University, Towson, MD 21252, USA.

Unlabelled: Soybean continues to serve as a rich and inexpensive source of protein for humans and animals. A substantial amount of information has been reported on the genotypic variation and beneficial genetic manipulation of soybeans. For better understanding of the consequences of genetic manipulation, elucidation of soybean protein composition is necessary, because of its direct relationship to phenotype. We have conducted studies to determine the composition of storage, allergen and anti-nutritional proteins in cultivated soybean using a combined proteomics approach. Two-dimensional polyacrylamide gel electrophoresis (2DPAGE) was implemented for the separation of proteins along with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography mass spectrometry (LC-MS/MS) for the identification of proteins. Our analysis resulted in the identification of several proteins, and a web based database named soybean protein database (SoyProDB) was subsequently built to house and allow scientists to search the data. This database will be useful to scientists who wish to genetically alter soybean with higher quality storage proteins, and also helpful for consumers to get a greater understanding about proteins that compose soy products available in the market. The database is freely accessible.

Availability: http://bioinformatics.towson.edu/Soybean_Seed_Proteins_2D_Gel_DB/Home.aspx.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630009165DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569605PMC
February 2013

RKN Lethal DB: A database for the identification of Root Knot Nematode (Meloidogyne spp.) candidate lethal genes.

Bioinformation 2012 1;8(19):950-2. Epub 2012 Oct 1.

Department of Computer and Information Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA.

Unlabelled: Root Knot nematode (RKN; Meloidogyne spp.) is one of the most devastating parasites that infect the roots of hundreds of plant species. RKN cannot live independently from their hosts and are the biggest contributors to the loss of the world's primary foods. RNAi gene silencing studies have demonstrated that there are fewer galls and galls are smaller when RNAi constructs targeted to silence certain RKN genes are expressed in plant roots. We conducted a comparative genomics analysis, comparing RKN genes of six species: Meloidogyne Arenaria, Meloidogyne Chitwoodi, Meloidogyne Hapla, Meloidogyne Incognita, Meloidogyne Javanica, and Meloidogyne Paranaensis to that of the free living nematode Caenorhabditis elegans, to identify candidate genes that will be lethal to RKN when silenced or mutated. Our analysis yielded a number of such candidate lethal genes in RKN, some of which have been tested and proven to be effective in soybean roots. A web based database was built to house and allow scientists to search the data. This database will be useful to scientists seeking to identify candidate genes as targets for gene silencing to confer resistance in plants to RKN.

Availability: The database can be accessed from http://bioinformatics.towson.edu/RKN/
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630008950DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488838PMC
November 2012

MAPT and PAICE: Tools for time series and single time point transcriptionist visualization and knowledge discovery.

Bioinformation 2012 31;8(6):287-9. Epub 2012 Mar 31.

Unlabelled: With the advent of next-generation sequencing, -omics fields such as transcriptomics have experienced increases in data throughput on the order of magnitudes. In terms of analyzing and visually representing these huge datasets, an intuitive and computationally tractable approach is to map quantified transcript expression onto biochemical pathways while employing datamining and visualization principles to accelerate knowledge discovery. We present two cross-platform tools: MAPT (Mapping and Analysis of Pathways through Time) and PAICE (Pathway Analysis and Integrated Coloring of Experiments), an easy to use analysis suite to facilitate time series and single time point transcriptomics analysis. In unison, MAPT and PAICE serve as a visual workbench for transcriptomics knowledge discovery, data-mining and functional annotation. Both PAICE and MAPT are two distinct but yet inextricably linked tools. The former is specifically designed to map EC accessions onto KEGG pathways while handling multiple gene copies, detection-call analysis, as well as UN/annotated EC accessions lacking quantifiable expression. The latter tool integrates PAICE datasets to drive visualization, annotation, and data-mining.

Availability: The database is available for free at http://sourceforge.net/projects/paice/http://sourceforge.net/projects/mapt/
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.6026/97320630008287DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321241PMC
August 2012

Mapping cell fate decisions that occur during soybean defense responses.

Plant Mol Biol 2011 Nov 11;77(4-5):513-28. Epub 2011 Oct 11.

Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.

The soybean defense response to the soybean cyst nematode was used as a model to map at cellular resolution its genotype-defined cell fate decisions occurring during its resistant reactions. The defense responses occur at the site of infection, a nurse cell known as the syncytium. Two major genotype-defined defense responses exist, the G. max ([Peking])- and G. max ([PI 88788])-types. Resistance in G. max ([Peking]) is potent and rapid, accompanied by the formation of cell wall appositions (CWAs), structures known to perform important defense roles. In contrast, defense occurs by a potent but more prolonged reaction in G. max ([PI 88788]), lacking CWAs. Comparative transcriptomic analyses with confirmation by Illumina® deep sequencing were organized through a custom-developed application, Pathway Analysis and Integrated Coloring of Experiments (PAICE) that presents gene expression of these cytologically and developmentally distinct defense responses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) framework. The analyses resulted in the generation of 1,643 PAICE pathways, allowing better understanding of gene activity across all chromosomes. Analyses of the rhg1 resistance locus, defined within a 67 kb region of DNA demonstrate expression of an amino acid transporter and an α soluble NSF attachment protein gene specifically in syncytia undergoing their defense responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-011-9828-3DOI Listing
November 2011

Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways.

BMC Genomics 2011 May 10;12:220. Epub 2011 May 10.

United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA.

Background: Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site.

Results: We examined the expression of soybean (Glycine max) genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered.

Conclusions: A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-12-220DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225080PMC
May 2011

Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788.

Plant Mol Biol 2011 Jan 14;75(1-2):141-65. Epub 2010 Dec 14.

Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA.

Glycine max L. Merr. (soybean) resistance to Heterodera glycines Ichinohe occurs at the site of infection, a nurse cell known as the syncytium. Resistance is classified into two cytologically-defined responses, the G. max ([Peking])- and G. max ([PI 88788])-types. Each type represents a cohort of G. max genotypes. Resistance in G. max ([Peking]) occurs by a potent and rapid localized response, affecting parasitic second stage juveniles (p-J2). In contrast, resistance occurs by a potent but more prolonged reaction in the genotype G. max ([PI 88788]) that affects nematode development at the J3 and J4 stages. Microarray analyses comparing these cytologically and developmentally distinct resistant reactions reveal differences in gene expression in pericycle and surrounding cells even before infection. The differences include higher relative levels of the differentially expressed in response to arachidonic acid 1 gene (DEA1 [Gm-DEA1]) (+224.19-fold) and a protease inhibitor (+68.28-fold) in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). Gene pathway analyses compare the two genotypes (1) before, (2) at various times during, (3) constitutively throughout the resistant reaction and (4) at all time points prior to and during the resistant reaction. The amplified levels of transcriptional activity of defense genes may explain the rapid and potent reaction in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). In contrast, the shared differential expression levels of genes in G. max ([Peking/PI 548402]) and G. max ([PI 88788]) may indicate a conserved genomic program underlying the G. max resistance on which the genotype-specific gene expression programs are built off.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-010-9715-3DOI Listing
January 2011

Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots.

Exp Parasitol 2011 Jan 3;127(1):90-9. Epub 2010 Jul 3.

United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA.

RNAi constructs targeted to four different genes were examined to determine their efficacy to reduce galls formed by Meloidogyne incognita in soybean roots. These genes have high similarity with essential soybean cyst nematode (Heterodera glycines) and Caenorhabditis elegans genes. Transformed roots were challenged with M. incognita. Two constructs, targeted to genes encoding tyrosine phosphatase (TP) and mitochondrial stress-70 protein precursor (MSP), respectively, strongly interfered with M. incognita gall formation. The number of galls formed on roots transformed with constructs targeting the M. incognita TP and MSP genes was reduced by 92% and 94.7%, respectively. The diameter of M. incognita inside these transformed roots was 5.4 and 6.5 times less than the diameter of M. incognita found inside control plants transformed with the empty vector. These results indicate that silencing the genes encoding TP and MSP can greatly decrease gall formation and shows a promising solution for broadening resistance of plants against this plant-parasitic nematode.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2010.06.037DOI Listing
January 2011

An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.

BMC Res Notes 2010 Jul 2;3:183. Epub 2010 Jul 2.

Jess and Mildred Fisher College of Science and Mathematics, Department of Computer and Information Sciences, Towson University, 7800 York Road, Towson, Maryland, 21252, USA.

Background: The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value.

Findings: We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations.

Conclusions: TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1756-0500-3-183DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908109PMC
July 2010

Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines).

J Biomed Biotechnol 2010 19;2010:491217. Epub 2010 May 19.

Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA.

Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2010/491217DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875038PMC
September 2012

Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines.

Plant Physiol Biochem 2010 Feb-Mar;48(2-3):176-93. Epub 2010 Jan 4.

Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS, 39762, USA.

The plant parasitic nematode, Heterodera glycines is the major pathogen of Glycine max (soybean). H. glycines accomplish parasitism by creating a nurse cell known as the syncytium from which it feeds. The syncytium undergoes two developmental phases. The first is a parasitism phase where feeding sites are selected, initiating the development of the syncytium. During this earlier phase (1-4 days post infection), syncytia undergoing resistant and susceptible reactions appear the same. The second phase is when the resistance response becomes evident (between 4 and 6dpi) and is completed by 9dpi. Analysis of the resistant reaction of G. max genotype PI 88788 (G. max([PI 88788])) to H. glycines population NL1-RHg/HG-type 7 (H. glycines([NL1-RHg/HG-type 7])) is accomplished by laser microdissection of syncytia at 3, 6 and 9dpi. Comparative analyses are made to pericycle and their neighboring cells isolated from mock-inoculated roots. These analyses reveal induced levels of the jasmonic acid biosynthesis and 13-lipoxygenase pathways. Direct comparative analyses were also made of syncytia at 6 days post infection to those at 3dpi (base line). The comparative analyses were done to identify localized gene expression that characterizes the resistance phase of the resistant reaction. The most highly induced pathways include components of jasmonic acid biosynthesis, 13-lipoxygenase pathway, S-adenosyl methionine pathway, phenylpropanoid biosynthesis, suberin biosynthesis, adenosylmethionine biosynthesis, ethylene biosynthesis from methionine, flavonoid biosynthesis and the methionine salvage pathway. In comparative analyses of 9dpi to 6dpi (base line), these pathways, along with coumarin biosynthesis, cellulose biosynthesis and homogalacturonan degradation are induced. The experiments presented here strongly implicate the jasmonic acid defense pathway as a factor involved in the localized resistant reaction of G. max([PI 88788]) to H. glycines([NL1-RHg/HG-type 7]).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2009.12.003DOI Listing
September 2010

A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode).

Plant Mol Biol 2009 Dec 29;71(6):525-67. Epub 2009 Sep 29.

Department of Biological Sciences, Mississippi State University, Harned Hall, Mississippi State, MS 39762, USA.

The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix soybean GeneChip directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-009-9539-1DOI Listing
December 2009

A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max.

Planta 2009 Jun 4;230(1):53-71. Epub 2009 Apr 4.

Department of Biological Sciences, Mississippi State University, Harned Hall, Rm 310, Mississippi State, MS 39762, USA.

Host-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway-compatible hm plant transformation system was developed specifically for these experiments in G. max. Three steps then were taken to identify H. glycines candidate genes. First, a pool of 150 highly conserved H. glycines homologs of genes having lethal mutant phenotypes or phenocopies from the free living nematode Caenorhabditis elegans were identified. Second, annotation of those 150 genes on the Affymetrix soybean GeneChip allowed for the identification of a subset of 131 genes whose expression could be monitored during the parasitic phase of the H. glycines life cycle. Third, a microarray analyses identified a core set of 32 genes with induced expression (>2.0-fold, log base 2) during the parasitic stages of infection. H. glycines homologs of small ribosomal protein 3a and 4 (Hg-rps-3a [accession number CB379877] and Hg-rps-4 [accession number CB278739]), synaptobrevin (Hg-snb-1 [accession number BF014436]) and a spliceosomal SR protein (Hg-spk-1 [accession number BI451523.1]) were tested for functionality in hm expression studies. Effects on H. glycines development were observed 8 days after infection. Experiments demonstrated that 81-93% fewer females developed on transgenic roots containing the genes engineered as tandem inverted repeats. The effect resembles RNA interference. The methodology has been used here as an alternative approach to engineer resistance to H. glycines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-009-0926-2DOI Listing
June 2009

Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking.

BMC Genomics 2009 Mar 16;10:111. Epub 2009 Mar 16.

Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA.

Background: A single Glycine max (soybean) genotype (Peking) reacts differently to two different populations of Heterodera glycines (soybean cyst nematode) within the first twelve hours of infection during resistant (R) and susceptible (S) reactions. This suggested that H. glycines has population-specific gene expression signatures. A microarray analysis of 7539 probe sets representing 7431 transcripts on the Affymetrix soybean GeneChip were used to identify population-specific gene expression signatures in pre-infective second stage larva (pi-L2) prior to their infection of Peking. Other analyses focused on the infective L2 at 12 hours post infection (i-L2(12h)), and the infective sedentary stages at 3 days post infection (i-L2(3d)) and 8 days post infection (i-L2/L3(8d)).

Results: Differential expression and false discovery rate (FDR) analyses comparing populations of pi-L2 (i.e., incompatible population, NL1-RHg to compatible population, TN8) identified 71 genes that were induced in NL1-RHg as compared to TN8. These genes included putative gland protein G23G12, putative esophageal gland protein Hgg-20 and arginine kinase. The comparative analysis of pi-L2 identified 44 genes that were suppressed in NL1-RHg as compared to TN8. These genes included a different Hgg-20 gene, an EXPB1 protein and a cuticular collagen. By 12 h, there were 7 induced genes and 0 suppressed genes in NL1-RHg. By 3d, there were 9 induced and 10 suppressed genes in NL1-RHg. Substantial changes in gene expression became evident subsequently. At 8d there were 13 induced genes in NL1-RHg. This included putative gland protein G20E03, ubiquitin extension protein, putative gland protein G30C02 and beta-1,4 endoglucanase. However, 1668 genes were found to be suppressed in NL1-RHg. These genes included steroid alpha reductase, serine proteinase and a collagen protein.

Conclusion: These analyses identify a genetic expression signature for these two populations both prior to and subsequently as they undergo an R or S reaction. The identification of genes like steroid alpha reductase and serine proteinase that are involved in feeding and nutritional uptake as being highly suppressed during the R response at 8d may indicate genes that the plant is targeting. The analyses also identified numerous putative parasitism genes that are differentially expressed. The 1668 genes that are suppressed in NL1-RHg, and hence induced in TN8 may represent genes that are important during the parasitic stages of H. glycines development. The potential for different arrays of putative parasitism genes to be expressed in different nematode populations may indicate how H. glycines evolve mechanisms to overcome resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-10-111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662880PMC
March 2009

Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines).

Planta 2007 Nov 1;226(6):1389-409. Epub 2007 Aug 1.

United States Department of Agriculture, Soybean Genomics and Improvement Laboratory, Bldg. 006, Rm. 118, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA.

Syncytial cells in soybean (Glycine max cultivar [cv.] Peking) roots infected by incompatible and compatible populations of soybean cyst nematode (SCN [Heterodera glycines]) were collected using laser capture microdissection (LCM). Gene transcript abundance was assayed using Affymetrix soybean GeneChips, each containing 37,744 probe sets. Our analyses identified differentially expressed genes in syncytial cells that are not differentially expressed in the whole root analyses. Therefore, our results show that the mass of transcriptional activity occurring in the whole root is obscuring identification of transcriptional events occurring within syncytial cells. In syncytial cells from incompatible roots at three dpi, genes encoding lipoxygenase (LOX), heat shock protein (HSP) 70, superoxidase dismutase (SOD) were elevated almost tenfold or more, while genes encoding several transcription factors and DNA binding proteins were also elevated, albeit at lower levels. In syncytial cells formed during the compatible interaction at three dpi, genes encoding prohibitin, the epsilon chain of ATP synthase, allene oxide cyclase and annexin were more abundant. By 8 days, several genes of unknown function and genes encoding a germin-like protein, peroxidase, LOX, GAPDH, 3-deoxy-D-arabino-heptolosonate 7-phosphate synthase, ATP synthase and a thioesterase were abundantly expressed. These observations suggest that gene expression is different in syncytial cells as compared to whole roots infected with nematodes. Our observations also show that gene expression is different between syncytial cells that were isolated from incompatible and compatible roots and that gene expression is changing over the course of syncytial cell development as it matures into a functional feeding site.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-007-0578-zDOI Listing
November 2007

A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection.

Planta 2007 Nov 25;226(6):1423-47. Epub 2007 Jul 25.

United States Department of Agriculture, Soybean Genomics and Improvement Laboratory, 10300 Baltimore Ave. Bldg 006, Beltsville, MD 20705, USA.

The development of an infection in soybean [Glycine max L. cultivar (cv.) Peking] roots by incompatible (I) and compatible (C) populations of soybean cyst nematode (SCN) (Heterodera glycines) was assayed using an AffymetriX soybean GeneChip. This time-course microarray analysis, using 37,744 probe sets, measured transcript abundance during I and C. These analyses reveal that infection by individual I and C H. glycines populations influence the transcription of G. max genes differently. A substantial difference in gene expression is present between I and C at 12 h post infection. Thus, G. max can differentiate between I and C nematode populations even before they have begun to select their feeding sites. The microarray analysis identified genes induced earlier in infection during I than C. MA also identified amplitude differences in transcript abundance between I and C reactions. Some of the probe sets measuring increased transcript levels during I represented no apical meristem (NAM) and WRKY transcription factors as well as NBS-LRR kinases. Later during I, heat shock protein (HSPs) probe sets (i.e. HSP90, HSP70, ClpB/HSP101) measured increased transcript abundance. These results demonstrate that G. max roots respond very differently to the different H. glycines races even before their feeding site selection has occurred. The ability of G. max to engage an I reaction, thus, appears to be dependent on the ability of root cells to recognize the different races of H. glycines because these experiments were conducted in the identical G. max genetic background.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-007-0581-4DOI Listing
November 2007

A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase.

BMC Dev Biol 2007 Apr 19;7:35. Epub 2007 Apr 19.

United States Department of Agriculture, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.

Background: Heterodera glycines (soybean cyst nematode [SCN]), the major pathogen of Glycine max (soybean), undergoes muscle degradation (sarcopenia) as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc) family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin) during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia.

Results: We developed a bioinformatics database that compares expressed sequence tag (est) and genomic data of C. elegans and H. glycines (CeHg database). We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin), unc-89, unc-15 (paromyosin), unc-27 (troponin I), unc-54 (myosin), and the potassium channel unc-110 (twk-18). Less reduction is observed for the focal adhesion complex gene Hg-unc-97.

Conclusion: The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-213X-7-35DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867819PMC
April 2007

BBGD: an online database for blueberry genomic data.

BMC Plant Biol 2007 Jan 30;7. Epub 2007 Jan 30.

Department of computer and information sciences, Towson University, 7800 York Road, Towson, Maryland, 21252, USA.

Background: Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG) was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry.

Description: BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure.

Conclusion: By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2229-7-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796881PMC
January 2007

Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes.

Exp Parasitol 2007 Mar 18;115(3):247-58. Epub 2006 Oct 18.

United States Department of Agriculture, ARS, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705-2350, USA.

The soybean cyst nematode (SCN; Heterodera glycines) is a devastating obligate parasite of Glycine max (soybean) causing one billion dollars in losses to the US economy per year and over ten billion dollars in losses worldwide. While much is understood about the pathology of H. glycines, its genome sequence is not well characterized or fully sequenced. We sought to create bioinformatic tools to mine the H. glycines nucleotide database. One way is to use a comparative genomics approach by anchoring our analysis with an organism, like the free-living nematode Caenorhabditis elegans. Unlike H. glycines, the C. elegans genome is fully sequenced and is well characterized with a number of lethal genes identified through experimental methods. We compared an EST database of H. glycines with the C. elegans genome. Our goal was identifying genes that may be essential for H. glycines survival and would serve as an automated pipeline for RNAi studies to both study and control H. glycines. Our analysis yielded a total of nearly 8334 conserved genes between H. glycines and C. elegans. Of these, 1508 have lethal phenotypes/phenocopies in C. elegans. RNAi of a conserved ribosomal gene from H. glycines (Hg-rps-23) yielded dead and dying worms as shown by positive Sytox fluorescence. Endogenous Hg-rps-23 exhibited typical RNA silencing as shown by RT-PCR. However, an unrelated gene Hg-unc-87 did not exhibit RNA silencing in the Hg-rps-23 dsRNA-treated worms, demonstrating the specificity of the silencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2006.09.009DOI Listing
March 2007

Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions.

Planta 2007 Feb 5;225(3):735-51. Epub 2006 Sep 5.

Fruit Laboratory, USDA/ARS, Henry A. Wallace Beltsville Agricultural Research Center, Bldg. 010A BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705, USA.

Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-006-0382-1DOI Listing
February 2007