Publications by authors named "Nada Derar"

6 Publications

  • Page 1 of 1

Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner syndrome.

Am J Med Genet A 2021 Jun 30;185(6):1649-1665. Epub 2021 Mar 30.

Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62124DOI Listing
June 2021

Analysis of transcript-deleterious variants in Mendelian disorders: implications for RNA-based diagnostics.

Genome Biol 2020 06 17;21(1):145. Epub 2020 Jun 17.

Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.

Background: At least 50% of patients with suspected Mendelian disorders remain undiagnosed after whole-exome sequencing (WES), and the extent to which non-coding variants that are not captured by WES contribute to this fraction is unclear. Whole transcriptome sequencing is a promising supplement to WES, although empirical data on the contribution of RNA analysis to the diagnosis of Mendelian diseases on a large scale are scarce.

Results: Here, we describe our experience with transcript-deleterious variants (TDVs) based on a cohort of 5647 families with suspected Mendelian diseases. We first interrogate all families for which the respective Mendelian phenotype could be mapped to a single locus to obtain an unbiased estimate of the contribution of TDVs at 18.9%. We examine the entire cohort and find that TDVs account for 15% of all "solved" cases. We compare the results of RT-PCR to in silico prediction. Definitive results from RT-PCR are obtained from blood-derived RNA for the overwhelming majority of variants (84.1%), and only a small minority (2.6%) fail analysis on all available RNA sources (blood-, skin fibroblast-, and urine renal epithelial cells-derived), which has important implications for the clinical application of RNA-seq. We also show that RNA analysis can establish the diagnosis in 13.5% of 155 patients who had received "negative" clinical WES reports. Finally, our data suggest a role for TDVs in modulating penetrance even in otherwise highly penetrant Mendelian disorders.

Conclusions: Our results provide much needed empirical data for the impending implementation of diagnostic RNA-seq in conjunction with genome sequencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-020-02053-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298854PMC
June 2020

De novo truncating variants in WHSC1 recapitulate the Wolf-Hirschhorn (4p16.3 microdeletion) syndrome phenotype.

Genet Med 2019 01 11;21(1):185-188. Epub 2018 Jun 11.

Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.

Purpose: Wolf-Hirschhorn syndrome (WHS) is a genomic disorder with a recognizable dysmorphology profile caused by hemizygosity at 4p16.3. Previous attempts have failed to map the minimal critical locus to a single gene, leaving open the possibility that the core phenotypic components of the syndrome are caused by the combined haploinsufficiency of multiple genes.

Methods: Clinical exome sequencing and "reverse" phenotyping.

Results: We identified two patients with de novo truncating variants in WHSC1, which maps to the WHS critical locus. The phenotype of these two individuals is consistent with WHS, which suggests that haploinsufficiency of WHSC1 is sufficient to recapitulate the core phenotype (characteristic facies, and growth and developmental delay) of this classic microdeletion syndrome.

Conclusion: Our study expands the list of microdeletion syndromes that are solved at the single-gene level, and establishes WHSC1 as a disease gene in humans. Given the severe nature of the reported variants, the full phenotypic expression of WHSC1 may be further expanded by future reports of milder variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0014-8DOI Listing
January 2019

Characterizing the morbid genome of ciliopathies.

Genome Biol 2016 11 28;17(1):242. Epub 2016 Nov 28.

Division of Experimental Ophthalmology and Medical Bioanalytics, Center for Ophthalmology, Eberhard-Karls University Tübingen, 72076, Tübingen, Germany.

Background: Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete.

Results: We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their "mutation load" beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population.

Conclusions: Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-016-1099-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126998PMC
November 2016

Acyclovir-Induced Neurotoxicity: A Case Report and Review of Literature.

Am J Ther 2016 May-Jun;23(3):e941-3

Department of Internal Medicine, University of Toledo, Toledo, OH.

Neurotoxicity can develop as a side effect of intravenous acyclovir use in patients with renal impairment. It is underreported in clinical practice and often confused with worsening herpes encephalitis. We present a 69-year-old woman with end-stage renal disease on hemodialysis with acyclovir neurotoxicity treated with daily extended hemodialysis sessions. Daily hemodialysis for extended period may shorten the neurotoxicity period and can help with faster return to normal mentation. A high index of suspicion is warranted to diagnose acyclovir-induced neurotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/MJT.0000000000000093DOI Listing
February 2017

Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor.

Cell Signal 2013 Apr 11;25(4):981-8. Epub 2013 Jan 11.

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Wayne State University School of Medicine, Detroit, MI, USA.

We previously have shown that Ahsg, a liver glycoprotein, inhibits insulin receptor (InsR) tyrosine kinase (TK) activity and the ERK1/2 mitogenic signaling arm of insulin signaling. Here we show that Ahsg blocks insulin-stimulated GLUT4 translocation and Akt activation in intact cells (mouse myoblasts). Furthermore, Ahsg inhibits InsR autophosphorylation of highly-purified insulin holoreceptors in a cell-free, ATP-dependent system, with an IC50 within the range of single-chain Ahsg concentrations in human serum. Binding of (125)I-insulin to living cells overexpressing the InsR shows a dissociation constant (KD) of 250pM, unaltered in the presence of 300 nM Ahsg. A mutant InsR cDNA encoding the signal peptide, the β-subunit and the furin processing site, but deleting the α-subunit, was stably expressed in HEK293 cells. Treatment with peroxovanadate, but not insulin, dramatically increased the 95 kD β-subunit tyrosine phosphoryation. The level of tyrosine phosphorylation of the 95-kD β-subunit can be driven down sharply by treatment of living HEK293 transfectant cells with physiological doses of Ahsg. Treatment of myogenic cells with Ahsg blunts insulin-stimulated InsR autophosphorylation and AKT phosphorylation. Taken together, we show that Ahsg antagonizes the metabolic functions initiated by InsR activation without interference in insulin binding. The experiments suggest a direct interaction of Ahsg with the InsR ectodomain β-subunit in a mode that does not significantly alter the high-affinity binding of insulin to the holoreceptor's two complementing α-subunits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2012.12.011DOI Listing
April 2013