Publications by authors named "N Ya Rapoport"

48 Publications

Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery.

Authors:
Natalya Rapoport

Adv Exp Med Biol 2016 ;880:221-41

Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Room, 3100, Salt Lake City, UT, 84112, USA.

The interaction of nanoparticles with directed energy is a novel application in targeted drug delivery. This chapter focuses on perfluorocarbon nanoemulsions, whose action in drug delivery depends on the ultrasound-triggered phase shift from liquid to gaseous state. These nanoemulsions have great potential for unloading encapsulated drugs at a desired time and location in the body in response to directed ultrasound. In addition, they actively alter their nano-environment for enhancing drug transport through various biological barriers to sites of action, which significantly enhances therapeutic outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-22536-4_13DOI Listing
March 2016

Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.

J Control Release 2015 Aug 16;212:70-7. Epub 2015 Jun 16.

Department of Bioengineering, University of Utah, United States. Electronic address:

The manuscript reports the side-by-side comparison of therapeutic properties of polymeric micelles and nanoemulsions generated from micelles. The effect of the structure of a hydrophobic block of block copolymer on the therapeutic efficacy, tumor recurrence, and development of drug resistance was studied in pancreatic tumor bearing mice. Mice were treated with paclitaxel (PTX) loaded poly(ethylene oxide)-co-polylactide micelles or corresponding perfluorocarbon nanoemulsions. Two structures of the polylactide block differing in a physical state of micelle cores or corresponding nanodroplet shells were compared. Poly(ethylene oxide)-co-poly(d,l-lactide) (PEG-PDLA) formed micelles with elastic amorphous cores while poly(ethylene oxide)-co-poly(l-lactide) (PEG-PLLA) formed micelles with solid crystalline cores. Micelles and nanoemulsions stabilized with PEG-PDLA copolymer manifested higher therapeutic efficacy than those formed with PEG-PLLA copolymer studied earlier. Better performance of PEG-PDLA micelles and nanodroplets was attributed to the elastic physical state of micelle cores (or droplet shells) allowing adequate rate of drug release via drug diffusion and/or copolymer biodegradation. The biodegradation of PEG-PDLA stabilized nanoemulsions was monitored by the ultrasonography of nanodroplets injected directly into the tumor; the PEG-PDLA stabilized nanodroplets disappeared from the injection site within 48h. In contrast, nanodroplets stabilized with PEG-PLLA copolymer were preserved at the injection site for weeks and months indicating extremely slow biodegradation of solid PLLA blocks. Multiple injections of PTX-loaded PEG-PDLA micelles or nanoemulsions to pancreatic tumor bearing mice resulted in complete tumor resolution. Two of ten tumors treated with either PEG-PDLA micellar or nanoemulsion formulation recurred after the completion of treatment but proved sensitive to the second treatment cycle indicating that drug resistance has not been developed. This is in contrast to the treatment with PEG-PLLA micelles or nanoemulsions where all resolved tumors quickly recurred after the completion of treatment and proved resistant to the repeated treatment. The prevention of drug resistance in tumors treated with PEG-PDLA stabilized formulations was attributed to the presence and preventive effect of copolymer unimers that were in equilibrium with PEG-PDLA micelles. PEG-PDLA stabilized nanoemulsions manifested lower hematological toxicity than corresponding micelles suggesting higher drug retention in circulation. Summarizing, micelles with elastic cores appear preferable to those with solid cores as drug carriers. Micelles with elastic cores and corresponding nanoemulsions both manifest high therapeutic efficacy, with nanoemulsions exerting lower systemic toxicity than micelles. The presence of a small fraction of micelles with elastic cores in nanoemulsion formulations is desirable for prevention of the development of drug resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.06.019DOI Listing
August 2015

Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging.

J Control Release 2015 May 14;206:153-60. Epub 2015 Mar 14.

Department of Translational Imaging, Houston Methodist Research Institute, Houston, United States.

Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.03.010DOI Listing
May 2015

Effect of ultrasound on the permeability of vascular wall to nano-emulsion droplets.

Ultrasound Med Biol 2013 Oct 9;39(10):1804-11. Epub 2013 Jul 9.

Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA.

The effect of ultrasound on the permeability of blood vessels to nano-emulsion droplets was investigated using excised mouse carotid arteries as model blood vessels. Perfluorocarbon nano-droplets were formed by perfluoro-15-crown-5-ether and stabilized by poly(ethylene oxide)-co-poly(DL-lactide) block co-polymer shells. Nano-droplet fluorescence was imparted by interaction with fluorescein isothiocyanate-dextran (molecular weight = 70,000 Da). The permeability of carotid arteries to nano-droplets was studied in the presence and absence of continuous wave or pulsed therapeutic 1-MHz ultrasound. The data indicated that the application of ultrasound resulted in permeabilization of the vascular wall to nano-droplets. The effect of continuous wave ultrasound was substantially stronger than that of pulsed ultrasound of the same total energy. No effect of blood vessel pre-treatment with ultrasound was observed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2013.04.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777764PMC
October 2013

Ultrasound-induced new cellular mechanism involved in drug resistance.

PLoS One 2012 19;7(12):e48291. Epub 2012 Dec 19.

Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

The acoustic effects in a biological milieu offer several scenarios for the reversal of multidrug resistance. In this study, we have observed higher sensitivity of doxorubicin-resistant uterine sarcoma MES-SA/DX5 cells to ultrasound exposure compared to its parent counterpart MES-SA cells; however, the results showed that the acoustic irradiation was genotoxic and could promote neotic division in exposed cells that was more pronounced in the resistant variant. The neotic progeny, imaged microscopically 24 hr post sonication, could contribute in modulating the final cell survival when an apoptotic dose of doxorubicin was combined with ultrasound applied either simultaneously or sequentially in dual-treatment protocols. Depending on the time and order of application of ultrasound and doxorubicin in combination treatments, there was either desensitization of the parent cells or sensitization of the resistant cells to doxorubicin action.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048291PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526611PMC
June 2013
-->