Publications by authors named "N V S Rao Mamidi"

32 Publications

Polyhydroxybutyrate-Based Nanocomposites for Bone Tissue Engineering.

Pharmaceuticals (Basel) 2021 Nov 15;14(11). Epub 2021 Nov 15.

Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico.

Bone-related diseases have been increasing worldwide, and several nanocomposites have been used to treat them. Among several nanocomposites, polyhydroxybutyrate (PHB)-based nanocomposites are widely used in drug delivery and tissue engineering due to their excellent biocompatibility and biodegradability. However, PHB use in bone tissue engineering is limited due to its inadequate physicochemical and mechanical properties. In the present work, we synthesized PHB-based nanocomposites using a nanoblend and nano-clay with modified montmorillonite (MMT) as a filler. MMT was modified using trimethyl stearyl ammonium (TMSA). Nanoblend and nano-clay were fabricated using the solvent-casting technique. Inspection of the composite structure revealed that the basal spacing of the polymeric matrix material was significantly altered depending on the loading percentage of organically modified montmorillonite (OMMT) nano-clay. The PHB/OMMT nanocomposite displayed enhanced thermal stability and upper working temperature upon heating as compared to the pristine polymer. The dispersed (OMMT) nano-clay assisted in the formation of pores on the surface of the polymer. The pore size was proportional to the weight percentage of OMMT. Further morphological analysis of these blends was carried out through FESEM. The obtained nanocomposites exhibited augmented properties over neat PHB and could have an abundance of applications in the industry and medicinal sectors. In particular, improved porosity, non-immunogenic nature, and strong biocompatibility suggest their effective application in bone tissue engineering. Thus, PHB/OMMT nanocomposites are a promising candidate for 3D organ printing, lab-on-a-chip scaffold engineering, and bone tissue engineering.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph14111163DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622693PMC
November 2021

Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces.

Colloids Surf B Biointerfaces 2021 Aug 4;204:111819. Epub 2021 May 4.

Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64849, Mexico.

Nanocomposite hydrogel particles grasp considerable attention in nanotechnology and nanomedicine as one of the potential drug delivery platforms. However, prevail a coveted drug delivery strategy with sustain and stimuli-drug release is still challenging. Herein, poly (N-(4-aminophenyl) methacrylamide))-carbon nano-onions (PAPMA-CNOs = f-CNOs)/diclofenac-complex integrated chitosan (CS) nanocomposite hydrogel nanoparticles (CNPs) were fabricated using an ionic gelation strategy. CNPs possess several conducive physicochemical properties, including spherical morphology and uniform particle distribution.In vitro drug release from CNPs was vetted in different pHs of gastrointestinal (GI) tract environment at a temperature range of 37-55 °C and found dual (pH and thermo)-responsive controlled drug release. Under pH 7.4, CNPs exhibited the highest drug release at 55 °C in 15 days. The drug release results disclose that the structure of CNPs was disassembled at 55 °C to release the encapsulated drug molecules in a controlled fashion. The CNPs also displayed good cell viability against human fibroblast cells. Thus, all the results together unveil that CNPs would thrive as a promising pH and temperature-triggered drug delivery platform for the GI tract and colon targeted drug delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111819DOI Listing
August 2021

Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites.

J Mech Behav Biomed Mater 2021 08 24;120:104554. Epub 2021 Apr 24.

Tecnologico de Monterrey, Campus Monterrey, School of Engineering and Science, Eugenio Garza Sada 2501 Sur, Col Tecnológico C.P., 64849, Monterrey, Nuevo León, Mexico.

This article focuses on obtaining ultra high molecular weight polyethylene (UHMWPE) material reinforced with functionalized single-walled carbon nanotubes (f-SWCNTs) and the manufacturing of unicompartmental knee implants via Single-Point Incremental Forming process (SPIF). The physicochemical properties of the developed UHMWPE reinforced with 0.01 and 0.1 wt% concentrations of f-SWCNTs are investigated using Raman and Thermogravimetic Analysis (TGA). Tensile mechanical tests performed in the nanocomposite material samples reveal a 12% improvement in their Young's modulus when compare to that of the pure UHMWPE material samples. Furthermore, the surface biocompatibility of the UHMWPE reinforced with f-SWCNTs materials samples was evaluated with human osteoblast cells. Results show cell viability enhancement with good cell growth and differentiation after 14 incubation days, that validates the usefulness of the developed nanocomposite material in the production of hip and knee artificial implants, and other biomedical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104554DOI Listing
August 2021

Covalently Functionalized Carbon Nano-Onions Integrated Gelatin Methacryloyl Nanocomposite Hydrogel Containing γ-Cyclodextrin as Drug Carrier for High-Performance pH-Triggered Drug Release.

Pharmaceuticals (Basel) 2021 Mar 25;14(4). Epub 2021 Mar 25.

Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA.

Herein, poly (-(4-aminophenyl) methacrylamide)) carbon nano-onions (PAPMA-CNOs = f-CNOs) and γ-cyclodextrin/DOX-complex (CD) reinforced gelatin methacryloyl (GelMA)/f-CNOs/CD supramolecular hydrogel interfaces were fabricated using the photo-crosslinking technique. The physicochemical properties, morphology, biodegradation, and swelling properties of hydrogels were investigated. The composite hydrogels demonstrated enriched drug release under the acidic conditions (pH 4.5 = 99%, and pH 6.0 = 82%) over 18 days. Owing to the f-CNOs inclusion, GelMA/f-CNOs/CD supramolecular hydrogels presented augmented tensile strength (σ = 356.1 ± 3.4 MPa), toughness (K = 51.5 ± 0.24 Jg), and Young's modulus (E = 41.8 ± 1.4 GPa). The strengthening of GelMA/f-CNOs/CD hydrogel systems indicates its good dispersion and the degree of polymer enveloping of f-CNOs within GelMA matrixes. Furthermore, the obtained hydrogels showed improved cell viability with human fibroblast cells. Nevertheless, the primed supramolecular hydrogels would pave the way for the controlled delivery systems for future drug delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph14040291DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064464PMC
March 2021

Engineering of carbon nano-onion bioconjugates for biomedical applications.

Mater Sci Eng C Mater Biol Appl 2021 Jan 4;120:111698. Epub 2020 Nov 4.

Tecnologico de Monterrey, Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico.

Engineered stimuli-responsive drug delivery strategies grasp enormous potential in biomedical applications for disease treatment due to their exploited therapeutic efficiency. In the current study, we developed poly 4-hydroxyphenyl methacrylate-carbon nano-onions (PHPMA-CNOs = f-CNOs) embedded bovine serum albumin (BSA) nanocomposite fibers by Forcespinning® (FS) technology for stimuli-responsive release of cargo, using doxorubicin (DOX) as a model drug. Nanocomposite fiber system showed thermosensitive drug release and exhibited around 72 and 95% of drug release at 37 and 43 °C, respectively. A slow and prolonged DOX release was observed over a 15-day study. The amount of drug released was determined by the concentration of the DOX payload, incubation temperature, and pH of the released medium. Owing to the f-CNOs incorporation, the mechanical strength (18.23 MPa) of hybrid BSA nanocomposite fibers was enhanced significantly. Besides, in vitro degradation, water contact angles, and thermal properties of nanocomposite fibers have augmented. During the in vitro cytotoxicity assessment, nanocomposite fibers exhibited improved cell viability against human fibroblast cells. Nonetheless, the external-stimuli-dependent and sustained DOX release perhaps reduces its circumventing side effects and show potential applications in biomedical research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111698DOI Listing
January 2021
-->