Publications by authors named "Mustafa Imren"

8 Publications

  • Page 1 of 1

First Report of Crown Rot Caused by Fusarium redolens on Wheat in Kazakhstan.

Plant Dis 2021 Mar 29. Epub 2021 Mar 29.

CIMMYT Turkey, CIMMYT Uluslararası Buğday ve Mısır Geliştirme Merkezi, Şehit Cem Ersever Caddesi No : 9/11, Tarla Bitkileri Araştırma Enstitüsü Kampüsü içi, Ankara, Ankara, Turkey, 06170;

Fusarium crown rot, caused by several species within the genus, is a major constraint that results in significant losses in wheat production worldwide. In June 2019, diseased wheat plants with typical symptoms of crown rot, including discoloration on the first two or three internodes of the stem just above the soil line and stunted, dry rotted, and discolored roots were collected in several bread wheat fields during the maturity stage in Almaty, East Kazakhstan, and Karaganda Regions of Kazakhstan. For each field, approximately twenty tillers were randomly sampled. Symptomatic tissues were surface sterilized in 1% NaClO for 2 min, rinsed with sterile distilled water three times, air-dried in a laminar flow hood, and then transferred to Petri dishes containing one-fifth strength potato dextrose agar (PDA). After incubating in the dark at 23°C for 5 days, 79 single-spore isolates showing cultural and microscopic characteristics of Fusarium were obtained on PDA and Spezieller-Nährstoffarmer agar (SNA). Colonies were initially white but later produced a beige to pink diffusible pigment in PDA. Microconidia that formed on aerial monophialides were hyaline, 0 to 1 septum, oval- to kidney-shaped, and measured 4.3 to 10.3 × 1.9 to 3.4 µm (average 7.8 × 2.6 µm), whilst macroconidia were straight to slightly curved, 3 to 5 septate, and measured 18.7 to 38.8 × 2.9 to 6.6 µm (average 29.9 × 4.7 µm), with foot-shaped basal cells on SNA. Chlamydospores were present on PDA. Sequence analysis based on portions of translation elongation factor 1α (TEF1) and the nuclear ribosomal internal transcribed spacer region (ITS rDNA) loci with primers EF1/EF2 (O'Donnell et al. 1998) and ITS1/ITS4 (White et al. 1990) identified 29 of the 79 isolates as Fusarium redolens Wollenw. The sequences of the five representative isolates with 99.85% of similarity to those of F. redolens strains available in GenBank e.g., ITS (MT435063) and TEF1 (GU250584). The TEF1 (accession nos. MW403914-MW403918) and ITS rDNA (accession nos. MW397138-MW397142) sequences of the isolates were deposited in GenBank. The morphological features are consistent with the described features of F. redolens (Leslie and Summerell 2006). To confirm pathogenicity of the five isolates, five pre-germinated seeds of wheat cultivar Seri 82 were placed in a 9-cm-diameter pot filled with a sterile potting mix containing equal volumes of peat, vermiculite, and soil. An approximately 1-cm-diameter 7-day-old mycelial plug of each isolate was individually placed in contact with the seeds. Seeds were covered with the same potting mix, and then the pots were maintained for four weeks in a growth chamber at 23°C with a 12-h photoperiod. The experiment was conducted twice with three replicate 15-cm pots with 5 plants per pot. Controls were inoculated with sterile agar plugs using the same procedure. After four weeks, all the inoculated plants showed stunted growth with brown discoloration in most parts of the crown and roots, whereas no symptoms were observed in the control plants. The mean severity of the disease for each isolate was between 2.1 and 2.7 according to the scale of 1 to 5 described by Gebremariam et al. (2015). The pathogen was reisolated from crowns of diseased plants, but not from asymptomatic control tissues, and identified morphologically based on the methods described above, fulfilling Koch's postulates. Although several morphological features are shared by F. oxysporum and F. redolens, Baayen et al. (2001) showed that these species could be easily distinguished using molecular data. The pathogen was previously reported as F. redolens associated with crown rot of wheat in Turkey (Gebremariam et al. 2015) and Saskatchewan, Canada (Taheri et al. 2011). The presence of F. redolens causing crown rot is confirmed in the six wheat fields surveyed in Kazakhstan, for the first time. This pathogen may pose a risk for wheat production, and further studies needed to determine the impact on the crop in Kazakhstan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-01-21-0015-PDNDOI Listing
March 2021

Plant-parasitic nematode associated with wheat in central, eastern, and south-eastern Kazakhstan.

Plant Dis 2021 Mar 23. Epub 2021 Mar 23.

CIMMYT Turkey, CIMMYT Uluslararası Buğday ve Mısır Geliştirme Merkezi, Şehit Cem Ersever Caddesi No : 9/11, Tarla Bitkileri Araştırma Enstitüsü Kampüsü içi, Ankara, Ankara, Turkey, 06170;

Kazakhstan is one of the biggest wheat producers, however, its wheat production is far below the average international wheat production standard due to biotic and abiotic stressors. Plant-parasitic nematodes are devastating for cereal production systems worldwide. A comprehensive survey was conducted in 2019 to identify plant-parasitic nematodes associated with wheat in different locations of central, eastern, and south-eastern Kazakhstan. The results revealed 33 root-lesion and 27 cyst nematode populations from the 77 localities sampled. These two genera occurred in separate or in mixed populations. The root-lesion populations were identified as Pratylenchus neglectus and P. thornei while all cyst nematodes were identified as Heterodera filipjevi. The identification of nematodes was firstly performed based on morphological and morphometric features and confirmed by BLAST and phylogenetic analyses based on the internal transcribed spacer and the D2-D3 expansion located in the 28S gene of ribosomal DNA for CCN and RLN populations, respectively. Pratylenchus neglectus and P. thornei populations from Kazakhstan showed a high similarity with the American, European, and Asian populations. Heterodera filipjevi populations formed a well-supported cluster with the corresponding populations from different countries and showed a slightly intraspecific polymorphism. Kazakhstan populations of H. filipjevi may have multiple introductions in Kazakhstan due to the divergence among them. The results of this study are of great importance for breeding programs and will enable awareness to extension advisors to develop measures to control these nematodes in cereal cropping areas in Kazakhstan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-20-2424-SRDOI Listing
March 2021

First Report of Fusarium culmorum and Microdochium bolleyi Causing Root Rot on Triticale in Kazakhstan.

Plant Dis 2021 Mar 3. Epub 2021 Mar 3.

CIMMYT Turkey, CIMMYT Uluslararası Buğday ve Mısır Geliştirme Merkezi, Şehit Cem Ersever Caddesi No : 9/11, Tarla Bitkileri Araştırma Enstitüsü Kampüsü içi, Ankara, Ankara, Turkey, 06170;

Triticale (×Triticosecale Wittmack) is obtained from wheat × rye crossing. It is positioned between wheat and rye in terms of resistance to soilborne pathogens including Gaeumannomyces graminis var. tritici, Fusarium culmorum, F. avenaceum, and Bipolaris sorokiniana (Arseniuk and Góral 2015). In 2019, seven triticale fields were surveyed in Almaty Province, Kazakhstan to examine soil-borne fungal pathogens. A total of 28 symptomatic plants with stunting, rot or discolored root were collected to identify causal agents. The overall disease incidence was approximately 8 to 10% in the fields. Fungi were isolated from 3-5 mm pieces excised from symptomatic tissues. The pieces were exposed to surface disinfection in 1% sodium hypochlorite solution for 2 min, rinsed three times with sterile distilled water, blotted dry, and plated on 1/5 strength potato dextrose agar (PDA) amended with 0.01% streptomycin. Plates were left in the dark at 23°C for 7 days. A total of 34 fungal colonies were isolated of which nineteen isolates, originally from six fields showed the cultural characteristics of B. sorokiniana. This species was previously reported to cause common root rot on triticale in Kazakhstan (Özer et al. 2020). Ten isolates from four fields produced pale orange and cottony mycelium with red pigmentation on the agar, which is typical of Fusarium-like growth. The remaining isolates (n=5) from two fields produced salmon-colored and scarce aerial mycelium with no soluble pigmentation, similar to Microdochium spp. Fusarium isolates produced thick-walled and curved macroconidia with 3-4 septa (n=50, 25.7 to 37.6 × 4.1 to 7.3 μm in size) and notched basal cell on PDA, but microconidia were absent, which matches the description of F. culmorum (Wm.G. Sm.) Sacc. (Leslie and Summerell 2006). Microdochium isolates produced swollen, brown, and thick-walled chlamydospores and hyaline, one-celled, and thin-walled conidia (n=50, 5.4 to 9.3 × 1.5 to 3.0 μm in size) formed on ampullate and cylindrical conidiogenous cells on oatmeal agar (OA). These morphological features are consistent with previous observations for Microdochium bolleyi (R. Sprague) de Hoog & Herm.-Nijh. (Hong et al. 2008). To confirm morphological preliminary identifications, the portion of the translation elongation factor 1-alpha (EF1-α) gene was amplified with EF1/EF2 primers (O'Donnell et al. 1998) for representative Fusarium isolates (n=4) for each field. Additionally, the internal transcribed spacer (ITS) of ribosomal DNA was amplified with ITS1/ITS4 primers (White et al. 1990) for representative Microdochium isolates (n=2) for each field. BLASTn queries against NCBI GenBank revealed that the EF1-α sequences of Fusarium isolates (MW311081-MW311084) shared 100% identity with F. culmorum strain CBS 110262 (KT008433). The ITS sequences of M. bolleyi isolates (MW301448-MW301449) matched that of M. bolleyi strain CBS 137.64 (AM502264) with 100% sequence similarity. Pathogenicity test was conducted on pregerminated seeds of triticale cv. Balausa. A plastic pot (17 cm height, 9 cm in diam) was filled with a sterile mixture of vermiculite, peat, and soil (1:1:1, v/v/v). Mycelial plugs (1 cm in diam) were cut from the margin of a growing culture of representative isolates (Kaz_Fus123 and Kaz_Mb01) and placed onto the mixture in the pot. A sterile agar plug was employed as a control treatment. One pregerminated seed was put on the plug and covered with the mixture. The pots were transferred to a growth chamber set at 23 ± 2°C and a photoperiod of 14 hours. The experiment was performed twice using 5 replication pots per isolate. Four weeks after inoculation, discoloration of the crown was observed on all the inoculated roots, whereas no symptoms were observed on the control plants. Koch's postulates were fulfilled by reisolating and identifying the pathogen based on the morphology described above. This is the first report of M. bolleyi and F. culmorum causing root rot on triticale in Kazakhstan. Although B. sorokiniana is the most primary pathogen that may limit yield in the production of triticale in Kazakhstan, F. culmorum and M. bolleyi have been found to be less frequent and less aggressive pathogens, respectively. Further studies are needed to better understand the potential distribution and impact of these pathogens on triticale.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-12-20-2659-PDNDOI Listing
March 2021

A GWAS to identify the cereal cyst nematode (Heterodera filipjevi) resistance loci in diverse wheat prebreeding lines.

J Appl Genet 2021 Feb 6;62(1):93-98. Epub 2021 Jan 6.

Geneshifters, 222 Mary Jena Lane, Pullman, WA, 99163, USA.

Yield losses because of cereal cyst nematodes could be as high as 92%, causing a bottleneck for wheat production. An integrated approach (application of pesticides, crop rotation, and use of host resistance) is needed to manage this devastating pathogen where resistant cultivars are considered most effective. This necessitates the identification of nematode-resistant sources in the available germplasm. Here, we report on the genetic mapping of nematode resistance in 255 diverse prebreeding lines (PBLs) employing an association mapping strategy. Altogether, seven additive quantitative trait loci (QTL) were identified on chromosomes 1A, 2A, 2B, 2D, 3A, 6B, and 6D explaining a maximum of 9.42% phenotypic variation where at least five QTL (on chromosomes 2A, 2B, 2D, 6B, and 6D) are located on the same chromosomes that harbor the already known nematode resistance genes. Resistant PBLs carried Aegilops squarrosa (436) in their pedigree which could be the possible source of positive alleles. To add to it, better yield performance of the identified nematode-resistant lines under stress conditions indicates that the germplasm can provide both nematode resistance and high-yielding cultivars.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-020-00607-yDOI Listing
February 2021

Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae).

Sci Rep 2020 11 5;10(1):19204. Epub 2020 Nov 5.

International Maize and Wheat Improvement Center (CIMMYT), P.K. 39, Emek, Ankara, 06511, Turkey.

The Mediterranean fruit fly, Ceratitis capitata Wiedemann, is a deleterious pest worldwide affecting fruit production. The entomopathogenic nematodes (EPNs) are a potential biocontrol agent that could be effectively used to control this Mediterranean fruit fly. In this study, five EPN strains reported from different fields in Morocco were evaluated for their efficacy against C. capitata. In laboratory assays, Steinernema feltiae-SF-MOR9, S. feltiae-SF-MOR10 and Heterorhabditis bacteriophora-HB-MOR7 strains showed significantly higher infectivity and penetration rates when compared to the other strains. S. feltiae-SF-MOR9 caused the highest larval mortality rate (80%) at 50 infective juveniles (IJs) cm. However, additional results showed that both S. feltiae strains were significantly effective in controlling C. capitata larvae in apricot (Prunus armeniaca) fruits on soil surface with high mortality rate at 50 and 100 IJs cm. Different soil textures and moisture levels resulted in a significant variation in EPN strain virulence against C. capitata. Sandy clay loam soil in combination with 50 IJs cm of S. feltiae (SF-MOR9 or SF-MOR10) caused a higher mortality rate of C. capitata larvae. Furthermore, applying these EPN strains at 50-100 IJs cm in combination with 10-15% moisture level showed optimal results against C. capitata larvae. Therefore, those two Moroccan EPN strains could be used as promising eco-friendly biological agents against C. capitata.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-76170-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645415PMC
November 2020

Identity and Pathogenicity of Fungi Associated with Crown and Root Rot of Dryland Winter Wheat in Azerbaijan.

Plant Dis 2020 Aug 26;104(8):2149-2157. Epub 2020 May 26.

International Maize and Wheat Improvement Centre (CIMMYT) P.O. Box. 39 Emek, Ankara, Turkey.

A comprehensive survey was performed to assess fungal populations associated with crown and root rot of wheat throughout the main wheat-growing areas of Azerbaijan. Samples were taken from 76 fields; 630 fungal strains were isolated, identified, and evaluated for pathogenicity. The identification was conducted with morphological and molecular tools such as species-specific PCR and DNA sequencing of the internal transcribed spacer (ITS) and -α (-α) loci. The fungus found in the greatest number of fields (44) was with 192 isolates, followed by . Other spp. isolates were identified: , , , , , , , and . , , , , and spp. isolates were also identified, associated with underground parts of wheat. Phylogenetic analyses based on ITS and -α sequences of the isolates showed that the isolates belonging to the same species were clearly separated in the dendrogram. Pathogenicity assays revealed that , , and were most aggressive; , , , , , and isolates were moderately aggressive; , , and were weakly aggressive; and others were nonpathogenic. The result of this study exhibited the existence of a wide range of species associated with crown and root rot of wheat in Azerbaijan. Additionally, this is the first report of , , , , and as pathogens on wheat in Azerbaijan. Azerbaijan is the second country after Algeria in which was detected.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-08-19-1799-REDOI Listing
August 2020

The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

Front Plant Sci 2017 21;8:1087. Epub 2017 Jun 21.

Faculty of Biological Sciences, University of LeedsLeeds, United Kingdom.

Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, , , and , in their respective potato, soybean, and spring wheat host roots. fluorescence analysis revealed highly similar cell wall composition of syncytia induced by and . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by and contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2017.01087DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478703PMC
June 2017

Association analysis of resistance to cereal cyst nematodes () and root lesion nematodes ( and ) in CIMMYT advanced spring wheat lines for semi-arid conditions.

Breed Sci 2016 Dec 25;66(5):692-702. Epub 2016 Oct 25.

Grains Research & Development Corporation (GRDC) , 4/4 National Circuit Barton 2600 ACT , Australia.

To identify loci linked to nematode resistance genes, a total of 126 of CIMMYT advanced spring wheat lines adapted to semi-arid conditions were screened for resistance to , , and , of which 107 lines were genotyped with 1,310 DArT. Association of DArT markers with nematode response was analyzed using the general linear model. Results showed that 11 markers were associated with resistance to (pathotype Ha21), 25 markers with resistance to , and 9 significant markers were identified to be linked with resistance to . In this work we confirmed that chromosome 4A (~90-105 cM) can be a source of resistance to as has been recently reported. Other significant markers were also identified on chromosomal regions where no resistant genes have been reported for both nematodes species. These novel QTL were mapped to chromosomes 5A, 6A, and 7A for ; on chromosomes 1A, 1B, 3A, 3B, 6B, 7AS, and 7D for ; and on chromosomes 1D, 2A, and 5B for and represent potentially new loci linked to resistance that may be useful for selecting parents and deploying resistance into elite germplasm adapted to regions where nematodes are causing problem.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1270/jsbbs.15158DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282747PMC
December 2016