Publications by authors named "Murray D Drew"

4 Publications

  • Page 1 of 1

Glycemic, insulinemic and methylglyoxal postprandial responses to starches alone or in whole diets in dogs versus cats: Relating the concept of glycemic index to metabolic responses and gene expression.

Comp Biochem Physiol A Mol Integr Physiol 2021 Jul 30;257:110973. Epub 2021 Apr 30.

Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. Electronic address:

Species differences between domestic cats (Felis catus) and dogs (Canis familiaris) has led to differences in their ability to digest, absorb and metabolize carbohydrates through poorly characterized mechanisms. The current study aimed to first examine biopsied small intestine, pancreas, liver and skeletal muscle from laboratory beagles and domestic cats for mRNA expression of key enzymes involved in starch digestion (amylase), glucose transport (sodium-dependent SGLTs and -independent glucose transporters, GLUT) and glucose metabolism (hexokinase and glucokinase). Cats had lower mRNA expression of most genes examined in almost all tissues compared to dogs (p < 0.05). Next, postprandial glucose, insulin, methylglyoxal (a toxic glucose metabolite) and d-lactate (metabolite of methylglyoxal) after single feedings of different starch sources were tested in fasted dogs and cats. After feeding pure glucose, peak postprandial blood glucose and methylglyoxal were surprisingly similar between dogs and cats, except cats had a longer time to peak and a greater area under the curve consistent with lower glycolytic enzyme expression. After feeding starches or whole diets to dogs, postprandial glycemic response, glycemic index, insulin, methylglyoxal and d-lactate followed reported glycemic index trends in humans. In contrast, cats showed very low to negligible postprandial glycemic responses and low insulin after feeding different starch sources, but not whole diets, with no relationship to methylglyoxal or d-lactate. Thus, the concept of glycemic index appears valid in dogs, but not cats. Differences in amylase, glucose transporters, and glycolytic enzymes are consistent with species differences in starch and glucose handling between cats and dogs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2021.110973DOI Listing
July 2021

Short-term obesity results in detrimental metabolic and cardiovascular changes that may not be reversed with weight loss in an obese dog model.

Br J Nutr 2014 Aug 30;112(4):647-56. Epub 2014 May 30.

Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan,52 Campus Drive,Saskatoon,SK,CanadaS7N 5B4.

The time course of metabolic and cardiovascular changes with weight gain and subsequent weight loss has not been elucidated. The goal of the present study was to determine how weight gain, weight loss and altered body fat distribution affected metabolic and cardiovascular changes in an obese dog model. Testing was performed when the dogs were lean (scores 4-5 on a nine-point scale), after ad libitum feeding for 12 and 32 weeks to promote obesity (>5 score), and after weight loss. Measurements included serum glucose and insulin, plasma leptin, adiponectin and C-reactive protein, echocardiography, flow-mediated dilation and blood pressure. Body fat distribution was assessed by computed tomography. Fasting serum glucose concentrations increased significantly with obesity (P< 0·05). Heart rate increased by 22 (SE 5) bpm after 12 weeks of obesity (P= 0·003). Systolic left ventricular free wall thickness increased after 12 weeks of obesity (P= 0·002), but decreased after weight loss compared with that observed in the lean phase (P= 0·03). Ventricular free wall thickness was more strongly correlated with visceral fat (r 0·6, P= 0·001) than with total body fat (r 0·4, P= 0·03) and was not significantly correlated with subcutaneous body fat (r 0·3, P= 0·1). The present study provides evidence that metabolic and cardiovascular alterations occur within only 12 weeks of obesity in an obese dog model and are strongly predicted by visceral fat. These results emphasise the importance of obesity prevention, as weight loss did not result in the return of all metabolic indicators to their normal levels. Moreover, systolic cardiac muscle thickness was reduced after weight loss compared with the pre-obesity levels, suggesting possible acute adverse cardiovascular effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114514001214DOI Listing
August 2014

Postprandial impairment of flow-mediated dilation and elevated methylglyoxal after simple but not complex carbohydrate consumption in dogs.

Nutr Res 2012 Apr 30;32(4):278-84. Epub 2012 Apr 30.

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4.

Hyperglycemia produces oxidative stress, which may impair endothelial function. Methylglyoxal, a reactive intermediate metabolite of glucose, is known to cause oxidative stress and is produced when excess carbohydrate is consumed in diabetic patients, but postprandial responses in healthy patients are unknown. We hypothesize that methylglyoxal levels will cause impaired endothelial function via increased oxidative stress after consuming a high glycemic index meal in healthy animals. Normal-weight laboratory beagles (n = 6) were used in a crossover study that tested postprandial responses of 4 complex carbohydrate sources (barley, corn, peas, rice) vs a simple carbohydrate (glucose). Blood samples were taken prefeeding and at timed intervals after feeding to measure serum glucose, insulin, nitrotyrosine, and methylglyoxal. Flow-mediated dilation (FMD), cardiac function (echocardiography), and blood pressure measurements were determined before and 60 minutes after feeding. The mean (±SEM) glycemic indices of the complex carbohydrate sources were 29 ± 5 for peas, 47 ± 10 for corn, 51 ± 7 for barley, and 55 ± 6 for rice. Postprandial FMD was lowest in the glucose group and significantly different from both the corn group and the FMD value for all complex carbohydrates combined. Methylglyoxal was significantly elevated at 60 minutes postprandial after glucose compared with the other carbohydrate sources. No significant effects of carbohydrate source were observed for blood pressure, nitrotyrosine, or echocardiographic variables. The novel finding of this study was that methylglyoxal levels increased after a single feeding of simple carbohydrate and may be linked to the observed postprandial decrease in endothelial function. Thus, consuming low-glycemic-index foods may protect the cardiovascular system by reducing oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2012.03.002DOI Listing
April 2012

Dietary encapsulated glycine influences Clostridium perfringens and Lactobacilli growth in the gastrointestinal tract of broiler chickens.

J Nutr 2007 Jun;137(6):1408-14

Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Three experiments were conducted to determine whether there is a causative relation between dietary glycine concentration and intestinal Clostridium perfringens growth in broiler chickens. Expt. 1 showed that glycine concentrations were higher (P < 0.05) in jejunum and ileum of birds fed fat-encapsulated glycine compared with crystalline glycine. In Expt. 2, 2 cages of 6 birds were assigned to 1 of 6 experimental diets formulated to contain 7.6 and 10.6, 17.8 and 40.6, 27.8 and 30.6, 37.8 and 20.6, 47.7 and 10.6, and 7.8 and 50.6 g/kg total glycine and proline, respectively, provided primarily by supplementation with encapsulated glycine or proline as required. In Expt. 3, 12 groups of 6 birds were fed 4 different diets supplemented with encapsulated glycine to achieve 7.6, 21.0, 34.3, or 47.7 g/kg total glycine. The birds were orally challenged with C. perfringens type A on d 1 and d 14-21 and killed on d 28. In Expt. 2, C. perfringens populations were higher (P < 0.05) in ileum and cecum of birds, which received either 37.8 or 47.7 g/kg total glycine compared with those fed 7.6 g/kg glycine. In Expt. 3, C. perfringens numbers were higher (P < 0.05) in ileum of birds fed either 34.3 or 47.7 g/kg dietary glycine than those given either 7.6 or 21.0 g/kg glycine. Conversely, lactobacilli counts in ileum and cecum were significantly lower in birds fed the higher levels of glycine in both experiments. High C. perfringens colonization and high intestinal lesion scores were associated with reduced performance (P < 0.05). We conclude that glycine is an important determinant of C. perfringens growth in the intestinal tract of broiler chickens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/137.6.1408DOI Listing
June 2007