Publications by authors named "Muriel Belotti"

19 Publications

  • Page 1 of 1

Diagnostic chest X-rays and breast cancer risk among women with a hereditary predisposition to breast cancer unexplained by a BRCA1 or BRCA2 mutation.

Breast Cancer Res 2021 08 3;23(1):79. Epub 2021 Aug 3.

Institut Claudius Regaud - IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France.

Background: Diagnostic ionizing radiation is a risk factor for breast cancer (BC). BC risk increases with increased dose to the chest and decreases with increased age at exposure, with possible effect modification related to familial or genetic predisposition. While chest X-rays increase the BC risk of BRCA1/2 mutation carriers compared to non-carriers, little is known for women with a hereditary predisposition to BC but who tested negative for a BRCA1 or BRCA2 (BRCA1/2) mutation.

Methods: We evaluated the effect of chest X-rays from diagnostic medical procedures in a dataset composed of 1552 BC cases identified through French family cancer clinics and 1363 unrelated controls. Participants reported their history of X-ray exposures in a detailed questionnaire and were tested for 113 DNA repair genes. Logistic regression and multinomial logistic regression models were used to assess the association with BC.

Results: Chest X-ray exposure doubled BC risk. A 3% increased BC risk per additional exposure was observed. Being 20 years old or younger at first exposure or being exposed before first full-term pregnancy did not seem to modify this risk. Birth after 1960 or carrying a rare likely deleterious coding variant in a DNA repair gene other than BRCA1/2 modified the effect of chest X-ray exposure.

Conclusion: Ever/never chest X-ray exposure increases BC risk 2-fold regardless of age at first exposure and, by up to 5-fold when carrying 3 or more rare variants in a DNA repair gene. Further studies are needed to evaluate other DNA repair genes or variants to identify those which could modify radiation sensitivity. Identification of subpopulations that are more or less susceptible to ionizing radiation is important and potentially clinically relevant.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores.

J Natl Cancer Inst 2021 Jul 28. Epub 2021 Jul 28.

Department of Molecular Medicine, University La Sapienza, Rome, Italy.

Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers.

Methods: 483 BRCA1 and 1,318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were three versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen-receptor (ER) negative (PRSER-) or ER-positive (PRSER+) breast cancer risk.

Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07-1.83) for BRCA1 and 1.33 (95% CI = 1.16-1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for both BRCA1 (OR = 1.73, 95% CI = 1.28-2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34-1.91) carriers. The estimated breast cancer ORs were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions.

Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and to inform clinical management.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2021

Association of Genomic Domains in and with Prostate Cancer Risk and Aggressiveness.

Cancer Res 2020 02 13;80(3):624-638. Epub 2019 Nov 13.

Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France.

Pathogenic sequence variants (PSV) in or () are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 and 171 male PSV carriers with prostate cancer, and 3,388 and 2,880 male PSV carriers without prostate cancer. PSVs in the 3' region of (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; = 0.0002). No genotype-phenotype associations were detected for PSVs in . These results demonstrate that specific PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2020

Height and Body Mass Index as Modifiers of Breast Cancer Risk in BRCA1/2 Mutation Carriers: A Mendelian Randomization Study.

J Natl Cancer Inst 2019 04;111(4):350-364

Department of Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT.

Background: BRCA1/2 mutations confer high lifetime risk of breast cancer, although other factors may modify this risk. Whether height or body mass index (BMI) modifies breast cancer risk in BRCA1/2 mutation carriers remains unclear.

Methods: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided.

Results: Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer.

Conclusion: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2019

Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores.

J Clin Oncol 2017 Jul 27;35(20):2240-2250. Epub 2017 Apr 27.

Julie Lecarpentier, Karoline B. Kuchenbaecker, Daniel Barrowdale, Joe Dennis, Lesley McGuffog, Goska Leslie, Andrew Lee, Ali Amin Al Olama, Jonathan P. Tyrer, Debra Frost, Steve Ellis, Douglas F. Easton, and Antonis C. Antoniou, University of Cambridge; Karoline B. Kuchenbaecker, The Wellcome Trust Sanger Institute, Hinxton; Marc Tischkowitz, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge; D. Gareth Evans, Manchester University, Central Manchester University Hospitals NHS Foundation Trust, Manchester; Alex Henderson, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne; Carole Brewer, Royal Devon and Exeter Hospital, Exeter; Diana Eccles, Southampton University Hospitals NHS Trust, Southampton; Jackie Cook, Sheffield Children's Hospital, Sheffield; Kai-ren Ong, Birmingham Women's Hospital Healthcare NHS Trust, Edgbaston, Birmingham; Lisa Walker, Churchill Hospital, Oxford; Lucy E. Side, Great Ormond Street Hospital for Children NHS Trust; Shirley Hodgson, St George's, University of London; Louise Izatt, Guy's and St Thomas' NHS Foundation Trust; Ros Eeles, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Nick Orr, The Institute of Cancer Research, London; Mary E. Porteous, Western General Hospital, Edinburgh; Rosemarie Davidson, South Glasgow University Hospitals, Glasgow; Julian Adlard, Chapel Allerton Hospital, Leeds, United Kingdom; Valentina Silvestri, Piera Rizzolo, Anna Sara Navazio, Virginia Valentini, Veronica Zelli, and Laura Ottini, Sapienza University of Rome, Rome; Angela Toss, Veronica Medici, and Laura Cortesi, University of Modena and Reggio Emilia, Modena; Ines Zanna and Domenico Palli, Cancer Research and Prevention Institute, Florence; Paolo Radice, Siranoush Manoukian, Bernard Peissel, and Jacopo Azzollini, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori (INT); Paolo Peterlongo, Italian Foundation for Cancer Research Institute of Molecular Oncology (IFOM), Milan; Alessandra Viel and Giulia Cini, CRO Aviano, National Cancer Institute, Aviano; Giuseppe Damante, University of Udine, Udine; Stefania Tommasi, Istituto Nazionale Tumori "Giovanni Paolo II", Bari; Elisa Alducci, Silvia Tognazzo, and Marco Montagna, Veneto Institute of Oncology IOV - IRCCS, Padua; Maria A. Caligo, University and University Hospital of Pisa, Pisa, Italy; Penny Soucy and Jacques Simard, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Quebec; Anna Marie Mulligan and Irene L. Andrulis, University of Toronto; Gord Glendon and Irene L. Andrulis, Mount Sinai Hospital, Toronto, Ontario, Canada; Melissa Southey, Ian Campbell, Paul James, and Gillian Mitchell, University of Melbourne, Parkville, Victoria; Amanda B. Spurdle, Helene Holland, and Georgia Chenevix-Trench, QIMR Berghofer Medical Research Institute, Brisbane, Queensland; Ian Campbell, Paul James, and Gillian Mitchell, Peter MacCallum Cancer Centre, East Melbourne, New South Wales, Australia; Esther M. John, Cancer Prevention Institute of California, Fremont; Linda Steele, Yuan Chun Ding, Susan L. Neuhausen, and Jeffrey N. Weitzel, City of Hope, Duarte, CA; Thomas A. Conner and Saundra S. Buys, Huntsman Cancer Institute; David E. Goldgar, University of Utah School of Medicine, Salt Lake City, UT; Andrew K. Godwin, University of Kansas Medical Center, Kansas City; Priyanka Sharma, University of Kansas Medical Center, Westwood, KS; Timothy R. Rebbeck, Harvard TH Chan School of Public Health and Dana Farber Cancer Institute, Boston, MA; Joseph Vijai, Mark Robson, Anne Lincoln, Jacob Musinsky, Pragna Gaddam, and Kenneth Offit, Memorial Sloan Kettering Cancer Center, New York, NY; Jennifer T. Loud and Mark H. Greene, National Cancer Institute, Bethesda, MD; Amanda Ewart Toland and Leigha Senter, The Ohio State University, Columbus, OH; Dezheng Huo, Sarah M. Nielsen, and Olufunmilayo I. Olopade, University of Chicago Medical Center, Chicago, IL; Katherine L. Nathanson and Susan M. Domchek, University of Pennsylvania, Philadelphia; Christa Lorenchick and Rachel C. Jankowitz, University of Pittsburgh Medical Center, Pittsburgh, PA; Fergus J. Couch, Mayo Clinic, Rochester, MN; Ramunas Janavicius, State Research Institute Innovative Medicine Center, Vilnius, Lithuania; Thomas V.O. Hansen, Rigshospitalet, Copenhagen University Hospital, Copenhagen; Anders Bojesen and Henriette Roed Nielsen, Vejle Hospital, Vejle; Anne-Bine Skytte, Lone Sunde, and Uffe Birk Jensen, Aarhus University Hospital, Aarhus; Inge Sokilde Pedersen, Aalborg University Hospital, Aalborg; Lotte Krogh, Torben A. Kruse, and Mads Thomassen, Odense University Hospital, Odense, Denmark; Ana Osorio, National Cancer Research Centre and Spanish Network on Rare Diseases; Miguel de la Hoya, Vanesa Garcia-Barberan, Trinidad Caldes, and Pedro Perez Segura, Hospital Clinico San Carlos, El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid; Judith Balmaña, University Hospital, Vall d'Hebron; Sara Gutiérrez-Enríquez and Orland Diez, Vall d'Hebron Institute of Oncology; Orland Diez, University Hospital Vall d'Hebron; Alex Teulé, Jesús Del Valle, Lidia Feliubadalo, Miquel Angel Pujana, and Conxi Lazaro, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona; Angel Izquierdo, Esther Darder, and Joan Brunet, Institut d'Investigació Biomèdica de Girona, Catalan Institute of Oncology, Girona, Spain; Florentia Fostira, National Centre for Scientific Research "Demokritos," Athens, Greece; Ute Hamann, German Cancer Research Center (DKFZ); Christian Sutter, University Hospital Heidelberg, Heidelberg; Alfons Meindl, Klinikumrechts der Isar, Technical University Munich; Nina Ditsch, Ludwig-Maximilian University, Munich; Andrea Gehrig, University Würzburg, Würzburg; Bernd Dworniczak, University of Münster, Münster; Christoph Engel, University of Leipzig; Dorothea Wand, University Hospital, Leipzig; Dieter Niederacher, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf; Doris Steinemann, Hannover Medical School, Hannover; Eric Hahnen, Jan Hauke, Kerstin Rhiem, Barbara Wappenschmidt, and Rita K. Schmutzler, University Hospital Cologne, Cologne; Karin Kast, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden; Norbert Arnold, University Hospital of Schleswig-Holstein, Christian-Albrechts University Kiel, Kiel; Shan Wang-Gohrke, University Hospital Ulm, Ulm, Germany; Christine Lasset, Francesca Damiola, and Laure Barjhoux, Centre Léon Bérard; Sylvie Mazoyer, University of Lyon, Lyon; Dominique Stoppa-Lyonnet and Muriel Belotti, Institut Curie, Paris, France; Mattias Van Heetvelde, Bruce Poppe, Kim De Leeneer, and Kathleen B.M. Claes, Ghent University, Gent, Belgium; Johanna I. Kiiski, Sofia Khan, and Heli Nevanlinna, University of Helsinki; Johanna I. Kiiski, Kristiina Aittomäki, Sofia Khan, and Heli Nevanlinna, Helsinki University Hospital, Helsinki, Finland; Christi J. van Asperen, Leiden University Medical Center, Leiden, the Netherlands; Tibor Vaszko, Miklos Kasler, and Edith Olah, National Institute of Oncology, Budapest, Hungary; Adalgeir Arason, Bjarni A. Agnarsson, Oskar Th. Johannsson, and Rosa B. Barkardottir, Landspitali University Hospital and Biomedical Centre, University of Iceland, Reykjavik, Iceland; Manuel R. Teixeira and Pedro Pinto, Portuguese Oncology Institute; Manuel R. Teixeira, Porto University, Porto, Portugal; Jong Won Lee, Ulsan College of Medicine and Asan Medical Center; Min Hyuk Lee and Jihyoun Lee, Soonchunhyang University and Hospital; Sung-Won Kim and Eunyoung Kang, Daerim St Mary's Hospital; Sue Kyung Park, Seoul National University College of Medicine, Seoul; Zisun Kim, Soonchunhyang University Bucheon Hospital, Bucheon, Korea; Yen Y. Tan, Andreas Berger, and Christian F. Singer, Medical University of Vienna, Vienna, Austria; Sook-Yee Yoon and Soo-Hwang Teo, Sime Darby Medical Centre, Subang Jaya, Malaysia; and Anna von Wachenfeldt, Karolinska University Hospital, Stockholm, Sweden.

Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 × 10). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively. Conclusion PRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2017

Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

PLoS One 2016 27;11(7):e0158801. Epub 2016 Jul 27.

Department of Genetics and Pathology, Pomeranian Medical University, Polabska 4, Szczecin, Poland.

Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.
View Article and Find Full Text PDF

Download full-text PDF

July 2017

Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2.

Breast Cancer Res 2016 Feb 9;18(1):15. Epub 2016 Feb 9.

Center for Medical Genetics, North Shore University Health System, Evanston, IL, USA.

Background: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs).

Methods: We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1/2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database.

Results: Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P for trend = 2 × 10(-5)) and higher grade (P for trend = 0.005) and were more likely to be oestrogen receptor-positive [odds ratio (OR) 10.59; 95 % confidence interval (CI) 5.15-21.80] and progesterone receptor-positive (OR 5.04; 95 % CI 3.17-8.04). With the exception of grade, similar patterns of associations emerged when we compared BRCA1 MBCs and FBCs. BRCA2 MBCs also presented with higher grade than MBCs from the SEER database (P for trend = 4 × 10(-12)).

Conclusions: On the basis of the largest series analysed to date, our results show that BRCA1/2 MBCs display distinct pathologic characteristics compared with BRCA1/2 FBCs, and we identified a specific BRCA2-associated MBC phenotype characterised by a variable suggesting greater biological aggressiveness (i.e., high histologic grade). These findings could lead to the development of gender-specific risk prediction models and guide clinical strategies appropriate for MBC management.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2016

Mutation screening of MIR146A/B and BRCA1/2 3'-UTRs in the GENESIS study.

Eur J Hum Genet 2016 08 20;24(9):1324-9. Epub 2016 Jan 20.

Cancer Research Centre of Lyon, CNRS UMR5286/Inserm U1052/Université Lyon 1, Centre Léon Bérard, Lyon, France.

Although a wide number of breast cancer susceptibility alleles associated with various levels of risk have been identified to date, about 50% of the heritability is still missing. Although the major BRCA1 and BRCA2 genes are being extensively screened for truncating and missense variants in breast and/or ovarian cancer families, potential regulatory variants affecting their expression remain largely unexplored. In an attempt to identify such variants, we focused our attention on gene regulation mediated by microRNAs (miRs). We screened two genes, MIR146A and MIR146B, producing miR-146a and miR-146b-5p, respectively, that regulate BRCA1, and the 3'- untranslated regions (3'-UTRs) of BRCA1 and BRCA2 in the GENESIS French national case/control study (BRCA1- and BRCA2-negative breast cancer cases with at least one sister with breast cancer and matched controls). We identified one rare variant in MIR146A, four in MIR146B, five in BRCA1 3'-UTR and one in BRCA2 3'-UTR in 716 index cases and 619 controls. Among these 11 rare variants, 7 were identified each in 1 index case. None of the three relevant MIR146A/MIR146B variants affected the pre-miR sequences. The potential causality of the four relevant BRCA1/BRCA2 3'-UTRs variants was evaluated with luciferase reporter assays and co-segregation studies, as well as with bioinformatics analyses to predict miRs-binding sites, RNA secondary structures and RNA accessibility. This is the first study to report the screening of miR genes and of BRCA2 3'-UTR in a large series of familial breast cancer cases. None of the variant identified in this study gave convincing evidence of potential pathogenicity.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2016

GENESIS: a French national resource to study the missing heritability of breast cancer.

BMC Cancer 2016 Jan 12;16:13. Epub 2016 Jan 12.

Université Claude Bernard Lyon 1, Villeurbanne, France.

Background: Less than 20% of familial breast cancer patients who undergo genetic testing for BRCA1 and BRCA2 carry a pathogenic mutation in one of these two genes. The GENESIS (GENE SISter) study was designed to identify new breast cancer susceptibility genes in women attending cancer genetics clinics and with no BRCA1/2 mutation.

Methods: The study involved the French national network of family cancer clinics. It was based on enrichment in genetic factors of the recruited population through case selection relying on familial criteria, but also on the consideration of environmental factors and endophenotypes like mammary density or tumor characteristics to assess potential genetic heterogeneity. One of the initial aims of GENESIS was to recruit affected sibpairs. Siblings were eligible when index cases and at least one affected sister were diagnosed with infiltrating mammary or ductal adenocarcinoma, with no BRCA1/2 mutation. In addition, unrelated controls and unaffected sisters were recruited. The enrolment of patients, their relatives and their controls, the collection of the clinical, epidemiological, familial and biological data were centralized by a coordinating center.

Results: Inclusion of participants started in February 2007 and ended in December 2013. A total of 1721 index cases, 826 affected sisters, 599 unaffected sisters and 1419 controls were included. 98% of participants completed the epidemiological questionnaire, 97% provided a blood sample, and 76% were able to provide mammograms. Index cases were on average 59 years old at inclusion, were born in 1950, and were 49.7 years of age at breast cancer diagnosis. The mean age at diagnosis of affected sisters was slightly higher (51.4 years). The representativeness of the control group was verified.

Conclusions: The size of the study, the availability of biological specimens and the clinical data collection together with the detailed and complete epidemiological questionnaire make this a unique national resource for investigation of the missing heritability of breast cancer, by taking into account environmental and life style factors and stratifying data on endophenotypes to decrease genetic heterogeneity.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2016

Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers.

J Clin Oncol 2015 Jul 26;33(21):2345-52. Epub 2015 May 26.

Gaëlle Bougeard, Mariette Renaux-Petel, Jean-Michel Flaman, Camille Charbonnier, Pierre Fermey, Julie Tinat, Stéphanie Baert-Desurmont, Thierry Frebourg, Institut National de la Santé et de la Recherche Médicale (Inserm) U1079, University of Rouen, Institute for Research and Innovation in Biomedicine; Julie Tinat, Stéphanie Baert-Desurmont, Thierry Frebourg, University Hospital, Rouen; Muriel Belotti, Marion Gauthier-Villars, Dominique Stoppa-Lyonnet, Curie Institute, Paris; Emilie Consolino, Laurence Brugières, Olivier Caron, Patrick R. Benusiglio, Brigitte Bressac-de Paillerets, Gustave Roussy Institute, Villejuif; Valérie Bonadona, Centre National de la Recherche Scientifique (CNRS) UMR 5558, University of Lyon 1, Leon Berard Cancer Center, Lyon; and Catherine Bonaïti-Pellié, Inserm UMR-S 669, University of Paris-Sud, Villejuif, France.

Purpose: The aim of the study was to update the description of Li-Fraumeni syndrome (LFS), a remarkable cancer predisposition characterized by extensive clinical heterogeneity.

Patients And Methods: From 1,730 French patients suggestive of LFS, we identified 415 mutation carriers in 214 families harboring 133 distinct TP53 alterations and updated their clinical presentation.

Results: The 322 affected carriers developed 552 tumors, and 43% had developed multiple malignancies. The mean age of first tumor onset was 24.9 years, 41% having developed a tumor by age 18. In childhood, the LFS tumor spectrum was characterized by osteosarcomas, adrenocortical carcinomas (ACC), CNS tumors, and soft tissue sarcomas (STS) observed in 30%, 27%, 26%, and 23% of the patients, respectively. In adults, the tumor distribution was characterized by the predominance of breast carcinomas observed in 79% of the females, and STS observed in 27% of the patients. The TP53 mutation detection rate in children presenting with ACC or choroid plexus carcinomas, and in females with breast cancer before age 31 years, without additional features indicative of LFS, was 45%, 42% and 6%, respectively. The mean age of tumor onset was statistically different (P < .05) between carriers harboring dominant-negative missense mutations (21.3 years) and those with all types of loss of function mutations (28.5 years) or genomic rearrangements (35.8 years). Affected children, except those with ACC, harbored mostly dominant-negative missense mutations.

Conclusion: The clinical gradient of the germline TP53 mutations, which should be validated by other studies, suggests that it might be appropriate to stratify the clinical management of LFS according to the class of the mutation.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2015

Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer.

JAMA 2015 Apr;313(13):1347-61

Department of Medicine and Genetics, University of California, San Francisco.

Importance: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.

Objective: To identify mutation-specific cancer risks for carriers of BRCA1/2.

Design, Setting, And Participants: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.

Exposures: Mutations of BRCA1 or BRCA2.

Main Outcomes And Measures: Breast and ovarian cancer risks.

Results: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.

Conclusions And Relevance: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2015

Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

Cancer Epidemiol Biomarkers Prev 2015 Jan 21;24(1):308-16. Epub 2014 Oct 21.

University of Texas MD Anderson Cancer Center, Houston, Texas.

Background: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes.

Methods: Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach.

Results: The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments.

Conclusion: There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers.

Impact: Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2015

Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk.

PLoS Genet 2013 27;9(3):e1003173. Epub 2013 Mar 27.

Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA.

Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9 × 10(-8)). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2013

Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

Cancer Epidemiol Biomarkers Prev 2012 Jan 5;21(1):134-47. Epub 2011 Dec 5.

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

Background: Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization.

Methods: We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the pathology of invasive breast, ovarian, and contralateral breast cancers.

Results: There was strong evidence that the proportion of estrogen receptor (ER)-negative breast tumors decreased with age at diagnosis among BRCA1 (P-trend = 1.2 × 10(-5)), but increased with age at diagnosis among BRCA2, carriers (P-trend = 6.8 × 10(-6)). The proportion of triple-negative tumors decreased with age at diagnosis in BRCA1 carriers but increased with age at diagnosis of BRCA2 carriers. In both BRCA1 and BRCA2 carriers, ER-negative tumors were of higher histologic grade than ER-positive tumors (grade 3 vs. grade 1; P = 1.2 × 10(-13) for BRCA1 and P = 0.001 for BRCA2). ER and progesterone receptor (PR) expression were independently associated with mutation carrier status [ER-positive odds ratio (OR) for BRCA2 = 9.4, 95% CI: 7.0-12.6 and PR-positive OR = 1.7, 95% CI: 1.3-2.3, under joint analysis]. Lobular tumors were more likely to be BRCA2-related (OR for BRCA2 = 3.3, 95% CI: 2.4-4.4; P = 4.4 × 10(-14)), and medullary tumors BRCA1-related (OR for BRCA2 = 0.25, 95% CI: 0.18-0.35; P = 2.3 × 10(-15)). ER-status of the first breast cancer was predictive of ER-status of asynchronous contralateral breast cancer (P = 0.0004 for BRCA1; P = 0.002 for BRCA2). There were no significant differences in ovarian cancer morphology between BRCA1 and BRCA2 carriers (serous: 67%; mucinous: 1%; endometrioid: 12%; clear-cell: 2%). CONCLUSIONS/IMPACT: Pathologic characteristics of BRCA1 and BRCA2 tumors may be useful for improving risk-prediction algorithms and informing clinical strategies for screening and prophylaxis.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2012

Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers.

Hum Mol Genet 2011 Aug 18;20(16):3304-21. Epub 2011 May 18.

Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.

Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 × 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 × 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2011

Common genetic variation at BARD1 is not associated with breast cancer risk in BRCA1 or BRCA2 mutation carriers.

Cancer Epidemiol Biomarkers Prev 2011 May 10;20(5):1032-8. Epub 2011 Mar 10.

QueenslanInstitute for Medical Research, Brisbane, Australia.

Background: Inherited BRCA1 and BRCA2 (BRCA1/2) mutations confer elevated breast cancer risk. Knowledge of factors that can improve breast cancer risk assessment in BRCA1/2 mutation carriers may improve personalized cancer prevention strategies.

Methods: A cohort of 5,546 BRCA1 and 2,865 BRCA2 mutation carriers was used to evaluate risk of breast cancer associated with BARD1 Cys557Ser. In a second nonindependent cohort of 1,537 of BRCA1 and 839 BRCA2 mutation carriers, BARD1 haplotypes were also evaluated.

Results: The BARD1 Cys557Ser variant was not significantly associated with risk of breast cancer from single SNP analysis, with a pooled effect estimate of 0.90 (95% CI: 0.71-1.15) in BRCA1 carriers and 0.87 (95% CI: 0.59-1.29) in BRCA2 carriers. Further analysis of haplotypes at BARD1 also revealed no evidence that additional common genetic variation not captured by Cys557Ser was associated with breast cancer risk.

Conclusion: Evidence to date does not support a role for BARD1 variation, including the Cy557Ser variant, as a modifier of risk in BRCA1/2 mutation carriers.

Impact: Interactors of BRCA1/2 have been implicated as modifiers of BRCA1/2-associated cancer risk. Our finding that BARD1 does not contribute to this risk modification may focus research on other genes that do modify BRCA1/2-associated cancer risk.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
May 2011

RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies.

Am J Hum Genet 2007 Dec 16;81(6):1186-200. Epub 2007 Oct 16.

Cancer Research UK, Genetic Epidemiology Unit, Strangeways Research Laboratory, Cambridge, CB1 8RN, UK.

RAD51 is an important component of double-stranded DNA-repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G-->C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25-2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83-1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91-1.51) among heterozygotes and 3.18 (95% CI 1.39-7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G-->C variant affects RAD51 splicing within the 5' UTR. Thus, 135G-->C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2007