Publications by authors named "Muralidharan Anbalagan"

26 Publications

  • Page 1 of 1

Acute toxicity evaluation of a novel ceramide analog for the treatment of breast cancer.

Toxicol Rep 2021 31;8:1521-1526. Epub 2021 Jul 31.

Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, USA.

We have previously reported that treating triple-negative tumor bearing nude mice with intraperitoneal (ip) 10 mg/kg body weight of (S,E)-3-hydroxy-2-(2-hydroxybenzylidene)aminotetradecylpropanamide, a ceramide analog, 5 days per week for 3 weeks, was shown not only to suppress tumor growth but also to reduce metastasis. Studies reported here focus on determining the toxicity of this drug in the nude mice. During the first study, treated animals (single intraperitoneal (ip) injection, 0, 40, 80 and 120 mg/kg body weight) were closely monitored for 14 days for any signs of illness or death. No mice were lost in any animal groups; however, hepatic serum enzymes were elevated, and hepatic and heart tissue damages were found in the highest dosage group. The subsequent study was performed using a lower dosage range (single ip injection, 0, 25, 50 and 75 mg/kg body weight), which resulted in no significant toxicity. All tested parameters were within normal ranges, with no observed irregularities. Our findings show that a single ip dose of this ceramide analog induced liver and heart toxicity at 120 mg/kg but not at doses of 80 mg/kg body weight or lower.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxrep.2021.07.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355835PMC
July 2021

Novel bone-targeted parathyroid hormone-related peptide antagonists inhibit breast cancer bone metastases.

Anticancer Drugs 2021 04;32(4):365-375

Tufts Medical Center, Boston, Massachusetts, USA.

Patients with advanced breast cancer often develop bone metastases. Treatment is limited to palliative care. Parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) antagonists for bone metastases failed clinically due to short half-life and inadequate concentration in bone. We synthesized two novel PTHrP antagonists fused to an inert bacterial collagen binding domain (CBD) that directs drugs to bone. PTH(7-33)-CBD is an N-terminal truncated PTHrP antagonist. [W2]PTH(1-33)-CBD is an PTHrP inverse-agonist. The aim of this study was to assess PTH(7-33)-CBD to reduce breast cancer bone metastases and prevent osteolytic destruction in mice and to assess both drugs for apoptosis of breast cancer cells in vitro and inhibition of PTH receptor (PTHR1). PTH(7-33)-CBD (1000 µg/kg, subcutaneous) or vehicle was administered 24 h prior to MDA-MB-231 breast cancer cell inoculation into the tibia marrow. Weekly tumor burden and bone density were measured. Pharmacokinetic analysis of PTH(7-33)-CBD in rat serum was evaluated. Drug effect on cAMP accumulation in SaOS-2 osteosarcoma cells and apoptosis of MDA-MB-231 cells was assessed. PTH(7-33)-CBD reduced MDA-MB-231 tumor burden and osteolytic destruction in mice 4-5 weeks post-treatment. PTH(7-33)-CBD (1000 μg/kg i.v. and subcutaneous) in rats was rapidly absorbed with peak concentration 5-min and terminal half-life 3-h. Bioavailability by the subcutaneous route was 43% relative to the i.v. route. PTH(7-33)-CBD was detected only on rat periosteal bone surfaces that stained positive for collagen-1. PTH(7-33)-CBD and [W2]PTH(1-33)-CBD (10-8M) blocked basal and PTH agonist-induced cAMP accumulation in SaOS-2 osteosarcoma cells. Both drugs induced PTHR1-dependent apoptosis of MDA-MB-231 cells in vitro. Novel bone-targeted PTHrP antagonists represent a new paradigm for treatment of breast cancer bone metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000001051DOI Listing
April 2021

Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERα+ breast cancer cells.

Stem Cell Investig 2020 3;7:20. Epub 2020 Nov 3.

Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India.

Background: To understand the mechanism underlying tamoxifen-induced multidrug resistance (MDR) and stem-like phenotypes in breast cancer cells, we treated the MCF-7 cells with 4-hydroxy-tamoxifen (TAM) for 6 months continuously and established MCF-7 tamoxifen resistance (TR) phenotypes.

Methods: In the present study, the following methods were used: cell viability assay, colony formation, cell cycle analysis, ALDEFLUOR assay, mammosphere formation assay, chromatin immunoprecipitation (ChIP) assay, PCR array, western blot analysis and quantitative reverse transcription polymerase chain reaction (QRT-PCR).

Results: The expression of ERα was significantly higher in MCF7-TR cells when compared with parental MCF-7 cells. MCF7-TR cells exposed to TAM showed a significant increase in the proliferation and rate of colony formation. The number of cancer stem cells was higher in MCF7-TR cells as observed by the increase in the number of ALDH+ cells. Furthermore, the number of mammospheres formed from the FACS-sorted ALDH+ cells was higher in MCF7-TR cells. Using PCR array analysis, we were able to identify that the long-term exposure of TAM leads to alterations in the epigenetic and MDR stem cell marker genes. Furthermore, western blot analysis demonstrated elevated levels of Notch-1 expression in MCF-TR cells compared with MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay revealed that Notch-1 enhanced the cyclin D1 expression significantly in these cells. In addition, we observed that MCF7-TR cells were resistant to doxorubicin but not the MCF-7 cells.

Conclusions: In the present study, we conclude that the treatment with tamoxifen induces multiple epigenetic alterations that lead to the development of MDR and stem-like phenotypes in breast cancers. Therefore, our study provides better insights to develop novel treatment regime to control the progression of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/sci-2020-020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715663PMC
November 2020

ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer.

Front Oncol 2020 3;10:1164. Epub 2020 Aug 3.

Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.

Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.01164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416559PMC
August 2020

Somatic mutations in the DNA repairome in prostate cancers in African Americans and Caucasians.

Oncogene 2020 05 16;39(21):4299-4311. Epub 2020 Apr 16.

Louisiana Cancer Research Center, New Orleans, LA, USA.

Most hereditary tumors show aberrations in DNA repair genes or their regulators. In contrast, only a minority of sporadic tumors show alterations in these genes. As a result, genomic instability is currently considered an enhancer of tumorigenesis rather than an obligatory event in this process. However, tumor heterogeneity presents a significant technical challenge for most cancer genomics studies performed at less than 100× mean resolution depth. To address the importance of genomic instability in prostate carcinogenesis and tumor progression, we performed ultrahigh depth exome sequencing of 124 DNA damage repair/response (repairome) genes in 63 tumors and matched normal tissue samples in African Americans and Caucasians. The average sequence depth was 712-fold for DNA isolated from normal tissue and 368-fold for FFPE tumors. We identified 671 somatic mutations in tumors from African Americans and 762 somatic mutations in tumors in Caucasians. The most frequently mutated DNA repairome genes were EXO1, ATR, POLQ, NEIL3, ERCC6, BRCA2, BRCA1, XPC, JAG1, RPA1, POLE, ATM, and LIG1 in African American men, and POLQ, NEIL3, POLB, BRCA2, EXO1, ERCC6, ATR, RBBP8, BRCA1, ATM, JAG1, XPC, and POLE in Caucasians. We found that 89% of tumors had at least one mutation in nucleotide excision repair pathway genes in African Americans, whereas >40% of tumors had mutations in base excision repair pathway genes in Caucasians. We further identified a marginal increase in mutation rate in tumors in African Americans with increasing age. Tumors in Caucasians did not show a correlation with age, but a progressive increase in the mutation rate was observed at higher Gleason scores. Our data reveal significant differences in the molecular signatures in the DNA repairome in prostate cancer between African Americans and Caucasians. These data also have substantial implications regarding the well-known health disparities in prostate cancer, such as the higher mortality in African Americans than Caucasians.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-020-1280-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239769PMC
May 2020

Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model.

BMC Cancer 2019 Mar 7;19(1):205. Epub 2019 Mar 7.

Department of Medicine, Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA.

Background: Triple-negative breast cancer (TNBC) represents an aggressive subtype with limited therapeutic options. Experimental preclinical models that recapitulate their tumors of origin can accelerate target identification, thereby potentially improving therapeutic efficacy. Patient-derived xenografts (PDXs), due to their genomic and transcriptomic fidelity to the tumors from which they are derived, are poised to improve the preclinical testing of drug-target combinations in translational models. Despite the previous development of breast and TNBC PDX models, those derived from patients with demonstrated health-disparities are lacking.

Methods: We use an aggressive TNBC PDX model propagated in SCID/Beige mice that was established from an African-American woman, TU-BcX-2 K1, and assess its metastatic potential and drug sensitivities under distinct in vitro conditions. Cellular derivatives of the primary tumor or the PDX were grown in 2D culture conditions or grown in mammospheres 3D culture. Flow cytometry and fluorescence staining was used to quantify cancer stem cell-like populations. qRT-PCR was used to describe the mesenchymal gene signature of the tumor. The sensitivity of TU-BcX-2 K1-derived cells to anti-neoplastic oncology drugs was compared in adherent cells and mammospheres. Drug response was evaluated using a live/dead staining kit and crystal violet staining.

Results: TU-BcX-2 K1 has a low propensity for metastasis, reflects a mesenchymal state, and contains a large burden of cancer stem cells. We show that TU-BcX-2 K1 cells have differential responses to cytotoxic and targeted therapies in 2D compared to 3D culture conditions insofar as several drug classes conferred sensitivity in 2D but not in 3D culture, or cells grown as mammospheres.

Conclusions: Here we introduce a new TNBC PDX model and demonstrate the differences in evaluating drug sensitivity in adherent cells compared to mammosphere, or suspension, culture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-019-5401-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407287PMC
March 2019

Breast cancer stem cells and the challenges of eradication: a review of novel therapies.

Stem Cell Investig 2018 31;5:39. Epub 2018 Oct 31.

Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.

Breast cancer is a heterogeneous disease that accounts for 30% of all cancers diagnosed in women and over half a million deaths per year. Cancer stem cells (CSCs) make up a small subpopulation of cells within a tumor, are capable of self-renewal and, are responsible for tumor initiation, formation, and recurrence. Breast CSCs (BCSCs) have been the subject of concentrated research as potential targets for breast cancer therapies. Cell surface markers CD44+/CD24- have been established as minimum biomarkers for BCSCs and the upregulation of CD44 expression has been linked to tumor formation in numerous cancers. Additionally, the deregulation of Notch, Wnt/Frizzled/β-catenin, Hippo, and Hedgehog signaling pathways is believed to be responsible for the formation of CSCs and lead to tumor formation. Tumor heterogeneity is a key feature of therapy resistance and a major challenge. CSCs are predominantly senescent and inherently immune to chemotherapy drugs which rely on an overactive cell cycle. Current therapeutic strategies include targeting CSC signaling pathways that play critical roles in self-renewal and defense. Anti-CD44 antibodies have been shown to induce terminal differentiation in CSCs resulting in a significant decrease in tumor metastasis. Additionally, targeting the tumor microenvironment has been shown to increase the effectiveness of chemotherapy drugs. In this review, we attempt to provide an overview of breast cancer, the stem of its cause, and novel therapies currently being explored.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21037/sci.2018.10.05DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232051PMC
October 2018

Effect of Daytime Blue-enriched LED Light on the Nighttime Circadian Melatonin Inhibition of Hepatoma 7288CTC Warburg Effect and Progression.

Comp Med 2018 08 6;68(4):269-279. Epub 2018 Jun 6.

Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA.

Liver cancer is the second leading cause of cancer death worldwide. Metabolic pathways within the liver and liver cancers are highly regulated by the central circadian clock in the suprachiasmatic nuclei (SCN). Daily light and dark cycles regulate the SCN-driven pineal production of the circadian anticancer hormone melatonin and temporally coordinate circadian rhythms of metabolism and physiology in mammals. In previous studies, we demonstrated that melatonin suppresses linoleic acid metabolism and the Warburg effect (aerobic glycolysis)in human breast cancer xenografts and that blue-enriched light (465-485 nm) from light-emitting diode lighting at daytime (bLAD) amplifies nighttime circadian melatonin levels in rats by 7-fold over cool white fluorescent (CWF) lighting. Here we tested the hypothesis that daytime exposure of tissue-isolated Morris hepatoma 7288CTC-bearing male rats to bLAD amplifies the nighttime melatonin signal to enhance the inhibition of tumor growth. Compared with rats housed under a 12:12-h light:dark cycle in CWF light, rats in bLAD light evinced a 7-fold higher peak plasma melatonin level at the mid-dark phase; in addition, high melatonin levels were prolonged until 4 h into the light phase. After implantation of tissue-isolated hepatoma 7288CTC xenografts, tumor growth rates were markedly delayed, and tumor cAMP levels, LA metabolism, the Warburg effect, and growth signaling activities were decreased in rats in bLAD compared with CWF daytime lighting. These data show that the increased nighttime circadian melatonin levels due to bLAD exposure decreases hepatoma metabolic, signaling, and proliferative activities beyond what occurs after normal melatonin signaling under CWF light.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.30802/AALAS-CM-17-000107DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103418PMC
August 2018

Dual Src Kinase/Pretubulin Inhibitor KX-01, Sensitizes ERα-negative Breast Cancers to Tamoxifen through ERα Reexpression.

Mol Cancer Res 2017 11 27;15(11):1491-1502. Epub 2017 Jul 27.

Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.

Unlike breast cancer that is positive for estrogen receptor-α (ERα), there are no targeted therapies for triple-negative breast cancer (TNBC). ERα is silenced in TNBC through epigenetic changes including DNA methylation and histone acetylation. Restoring ERα expression in TNBC may sensitize patients to endocrine therapy. Expression of c-Src and ERα are inversely correlated in breast cancer suggesting that c-Src inhibition may lead to reexpression of ERα in TNBC. KX-01 is a peptide substrate-targeted Src/pretubulin inhibitor in clinical trials for solid tumors. KX-01 (1 mg/kg body weight-twice daily) inhibited growth of tamoxifen-resistant MDA-MB-231 and MDA-MB-157 TNBC xenografts in nude mice that was correlated with Src kinase inhibition. KX-01 also increased ERα mRNA and protein, as well as increased the ERα targets progesterone receptor (PR), pS2 (TFF1), cyclin D1 (CCND1), and c-myc (MYC) in MDA-MB-231 and MDA-MB-468, but not MDA-MB-157 xenografts. MDA-MB-231 and MDA-MB-468 tumors exhibited reduction in mesenchymal markers (vimentin, β-catenin) and increase in epithelial marker (E-cadherin) suggesting mesenchymal-to-epithelial transition (MET). KX-01 sensitized MDA-MB-231 and MDA-MB-468 tumors to tamoxifen growth inhibition and tamoxifen repression of the ERα targets pS2, cyclin D1, and c-myc. Chromatin immunoprecipitation (ChIP) of the ERα promoter in KX-01-treated tumors demonstrated enrichment of active transcription marks (acetyl-H3, acetyl-H3Lys9), dissociation of HDAC1, and recruitment of RNA polymerase II. Methylation-specific PCR and bisulfite sequencing demonstrated no alteration in ERα promoter methylation by KX-01. These data demonstrate that in addition to Src kinase inhibition, peptidomimetic KX-01 restores ERα expression in TNBC through changes in histone acetylation that sensitize tumors to tamoxifen. Src kinase/pretubulin inhibitor KX-01 restores functional ERα expression in ERα breast tumors, a novel treatment strategy to treat triple-negative breast cancer. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-16-0297-TDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930017PMC
November 2017

Argonaute 2 Expression Correlates with a Luminal B Breast Cancer Subtype and Induces Estrogen Receptor Alpha Isoform Variation.

Noncoding RNA 2016 Sep 21;2(3). Epub 2016 Sep 21.

Department of Biological and Agricultural Engineering Louisiana State University Baton Rouge, LA 70803, USA.

Estrogen receptor alpha (ERα) signaling pathways are frequently disrupted in breast cancer and contribute to disease progression. ERα signaling is multifaceted and many ERα regulators have been identified including transcription factors and growth factor pathways. More recently, microRNAs (miRNAs) are shown to deregulate ERα activity in breast carcinomas, with alterations in both ERα and miRNA expression correlating to cancer progression. In this study, we show that a high expression of Argonaute 2 (AGO2), a translation regulatory protein and mediator of miRNA function, correlates with the luminal B breast cancer subtype. We further demonstrate that a high expression of AGO2 in ERα+ tumors correlates with a poor clinical outcome. MCF-7 breast cancer cells overexpressing AGO2 (MCF7-AGO2) altered ERα downstream signaling and selective ERα variant expression. Enhanced ERα-36, a 36 kDa ERα isoform, protein and gene expression was observed in vitro. Through quantitative polymerase chain reaction (qPCR), we demonstrate decreased basal expression of the full-length ERα and progesterone receptor genes, in addition to loss of estrogen stimulated gene expression in vitro. Despite the loss, MCF-7-AGO2 cells demonstrated increased estrogen stimulated tumorigenesis in vivo. Together with our clinical findings on AGO2 expression and the luminal B subtype, we suggest that AGO2 is a regulator of altered ERα signaling in breast tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ncrna2030008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831908PMC
September 2016

Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Head and Neck Cancer Xenografts.

Aesthet Surg J 2016 Jan 10;36(1):93-104. Epub 2015 Jun 10.

Dr Rowan is Piltz Professor of Cancer Research, Tulane Cancer Center, and Associate Professor and Interim Chair, Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana. Drs Lacayo and Sheng are Postdoctoral Researchers, Dr Anbalagan is an Instructor, and Mr Jones is a Technician, Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana. Dr Gimble is Adjunct Professor, Departments of Medicine, Surgery, and Structural and Cellular Biology, and the Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana. Mr Joseph is a Medical Student and Dr Chiu is an Associate Professor, Department of Plastic Surgery, New York University Langone Medical Center, New York, New York. Dr Friedlander is the Chairman, Department of Otolaryngology, Tulane University School of Medicine, New Orleans, Louisiana.

Background: Fat grafting has become popular for repair of postsurgical/postradiation defects after head/neck cancers resection. Fat graft supplementation with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve graft viability/efficacy, although the impact of ASCs on head/neck cancer cells is unknown.

Objectives: To determine whether ASCs affect growth, migration, and metastasis of human head/neck cancer.

Methods: Human Cal-27 and SCC-4 head/neck cancer cells were co-cultured human ASCs, or treated with ASC conditioned medium (CM), and cancer cell growth/migration was assessed by MTT, cell count, and scratch/wound healing assays in vitro. Co-injection of 3 × 10(6) Cal-27/green fluorescent protein (GFP) cells and ASCs into the flank of NUDE mice assessed ASC effect on tumor growth/morphology. Quantitation of human chromosome 17 DNA in mouse organs assessed ASC effects on micrometastasis. Primary tumors were evaluated for markers of epithelial-to-mesenchymal transition, matrix metalloproteinases, and angiogenesis by immunohistochemistry.

Results: Co-culture of Cal-27 or SCC-4 cells with ASCs from 2 different donors or ASC CM had no effect on cell growth in vitro. However, ASC CM stimulated Cal-27 and SCC-4 migration. Co-injection of ASCs from 2 different donors with Cal-27 cells did not affect tumor volume at 6 weeks, but increased Cal-27 micrometastasis to the brain. Evaluation of tumors sections from 1 ASC donor co-injection revealed that ASCs were viable and well integrated with Cal-27/GFP cells. These tumors exhibited increased MMP2, MMP9, IL-8, and microvessel density.

Conclusions: Human ASCs did not alter growth of human head/neck cancer cells or tumor xenografts, but stimulated migration and early micrometastasis to mouse brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/asj/sjv090DOI Listing
January 2016

Somatic Mutations in Catalytic Core of POLK Reported in Prostate Cancer Alter Translesion DNA Synthesis.

Hum Mutat 2015 Sep 25;36(9):873-80. Epub 2015 Jun 25.

Tulane Cancer Center, Tulane University, New Orleans, Louisiana.

DNA polymerase kappa is a Y-family polymerase that participates to bypass the damaged DNA known as translesion synthesis (TLS) polymerase. Higher frequency of mutations in DNA polymerase kappa (POLK) recently been reported in prostate cancer. We sequenced entire exons of the POLK gene on genomic DNA from 40 prostate cancers and matched normal samples. We identified that 28% of patients have somatic mutations in the POLK gene of the prostate tumors. Mutations in these prostate cancers have somatic mutation spectra, which are dominated by C-to-T transitions. In the current study, we further investigate the effect of p.E29K, p.G154E, p.F155S, p.E430K, p.L442F, and p.E449K mutations on the biochemical properties of the polymerase in vitro, using TLS assay and nucleotide incorporation fidelity, following site-directed mutagenesis bacterial expression, and purification of the respective polymerase variants. We report that following missense mutations p.E29K, p.G154E, p.F155S, p.E430K, and p.L442F significantly diminished the catalytic efficiencies of POLK with regard to the lesion bypass (AP site). POLK variants show extraordinarily low fidelity by misincorporating T, C, and G as compared to wild-type variants. Taken together, these results suggest that interfering with normal polymerase kappa function by these mutations may be involved in prostate carcinogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22820DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537374PMC
September 2015

Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer.

Mol Cell Endocrinol 2015 Dec 15;418 Pt 3:264-72. Epub 2015 Jan 15.

Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA. Electronic address:

Estrogen receptor α (ERα) is a member of the nuclear receptor superfamily of transcription factors that regulates cell proliferation, differentiation and homeostasis in various tissues. Sustained exposure to estrogen/estradiol (E2) increases the risk of breast, endometrial and ovarian cancers. ERα function is also regulated by phosphorylation through various kinase signaling pathways that will impact various ERα functions including chromatin interaction, coregulator recruitment and gene expression, as well impact breast tumor growth/morphology and breast cancer patient response to endocrine therapy. However, many of the previously characterized ERα phosphorylation sites do not fully explain the impact of receptor phosphorylation on ERα function. This review discusses work from our laboratory toward understanding a role of ERα site-specific phosphorylation in ERα function and breast cancer. The key findings discussed in this review are: (1) the effect of site specific ERα phosphorylation on temporal recruitment of ERα and unique coactivator complexes to specific genes; (2) the impact of stable disruption of ERα S118 and S167 phosphorylation in breast cancer cells on eliciting unique gene expression profiles that culminate in significant effects on breast cancer growth/morphology/migration/invasion; (3) the Src kinase signaling pathway that impacts ERα phosphorylation to alter ERα function; and (4) circadian disruption by light exposure at night leading to elevated ERK1/2 and Src kinase and phosphorylation of ERα, concomitant with tamoxifen resistance in breast tumor models. Results from these studies demonstrate that even changes to single ERα phosphorylation sites can have a profound impact on ERα function in breast cancer. Future work will extend beyond single site phosphorylation analysis toward identification of specific patterns/profiles of ERα phosphorylation under different physiological/pharmacological conditions to understand how common phosphorylation profiles in breast cancer program specific physiological endpoints such as growth, apoptosis, migration/invasion, and endocrine therapy response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2015.01.016DOI Listing
December 2015

Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer.

Cancer Res 2014 Aug;74(15):4099-110

Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and.

Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-13-3156DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119539PMC
August 2014

Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators.

Breast Cancer Res Treat 2014 Jun 9;145(3):593-604. Epub 2014 May 9.

Department of Medicine, Section of Hematology and Medical Oncology, Tulane University Health Sciences Center, 1430 Tulane Ave, New Orleans, LA, 70112, USA.

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-014-2979-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083690PMC
June 2014

Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.

PLoS One 2014 28;9(2):e89595. Epub 2014 Feb 28.

Department of Plastic Surgery, New York University Langone Medical Center, New York, New York, United States of America.

Background: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis.

Methodology/principal Findings: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells.

Conclusions: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231 breast tumor xenografts to multiple mouse organs. MDA-MB-231 tumors co-injected with ASCs from one donor exhibited partial EMT, expression of MMP-9, and increased angiogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089595PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938488PMC
November 2014

Arsenic inhibits the adipogenic differentiation of mesenchymal stem cells by down-regulating peroxisome proliferator-activated receptor gamma and CCAAT enhancer-binding proteins.

Toxicol In Vitro 2013 Feb 26;27(1):211-9. Epub 2012 Oct 26.

Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA.

Arsenic remains a top environmental concern in the United States as well as worldwide because of its global existence and serious health impacts. Apoptotic effect of arsenic in human mesenchymal stem cells (hMSCs) has been identified in our previous study; the effects of arsenic on hMSCs remain largely unknown. Here, we report that arsenic inhibits the adipogenic differentiation of human mesenchymal stem cells (hMSCs). Arsenic reduced the formation of lipid droplets and the expression of adipogenesis-related proteins, such as CCAAT enhancer binding protein-(C/EBPs), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and adipocyte fatty acid-binding protein aP2 (aP2). Arsenic mediates this process by sustaining PPAR-γ activity. In addition, inhibition of PPAR-γ activity with T0070907 and up-regulation with its agonist troglitazone, showed the direct association of PPAR-γ and arsenic-mediated inhibition of differentiating hMSCs. Taken together, these results indicate that arsenic inhibits adipogenic differentiation through PPAR-γ pathway and suggest a novel inhibitory effect of arsenic on adipogenic differentiation in hMSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2012.10.012DOI Listing
February 2013

Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts.

Mol Cancer Ther 2012 Sep 10;11(9):1936-47. Epub 2012 Jul 10.

1Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.

Src kinase is elevated in breast tumors that are ER/PR negative and do not overexpress HER2, but clinical trials with Src inhibitors have shown little activity. The present study evaluated preclinical efficacy of a novel peptidomimetic compound, KX-01 (KX2-391), that exhibits dual action as an Src and pretubulin inhibitor. KX-01 was evaluated as a single-agent and in combination with paclitaxel in MDA-MB-231, MDA-MB-157, and MDA-MB-468 human ER/PR/HER2-negative breast cancer cells. Treatments were evaluated by growth/apoptosis, isobologram analysis, migration/invasion assays, tumor xenograft volume, metastasis, and measurement of Src, focal adhesion kinase (FAK), microtubules, Ki67, and microvessel density. KX-01 inhibited cell growth in vitro and in combination with paclitaxel resulted in synergistic growth inhibition. KX-01 resulted in a dose-dependent inhibition of MDA-MB-231 and MDA-MB-157 tumor xenografts (1 and 5 mg/kg, twice daily). KX-01 inhibited activity of Src and downstream mediator FAK in tumors that was coincident with reduced proliferation and angiogenesis and increased apoptosis. KX01 also resulted in microtubule disruption in tumors. Combination of KX-01 with paclitaxel resulted in significant regression of MDA-MB-231 tumors and reduced metastasis to mouse lung and liver. KX-01 is a potently active Src/pretubulin inhibitor that inhibits breast tumor growth and metastasis. As ER/PR/HER2-negative patients are candidates for paclitaxel therapy, combination with KX-01 may potentiate antitumor efficacy in management of this aggressive breast cancer subtype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-12-0146DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462004PMC
September 2012

Subcellular localization of total and activated Src kinase in African American and Caucasian breast cancer.

PLoS One 2012 22;7(3):e33017. Epub 2012 Mar 22.

Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America.

Background: Src, a non-receptor tyrosine kinase is elevated in cancer with expression and activity correlated with cell proliferation, adhesion, survival, motility, metastasis and angiogenesis. There is limited data on Src expression and subcellular localization in breast cancer and no information about expression in racial/ethnic groups.

Methodology/principal Findings: The present study evaluated Src expression, activity, and subcellular localization in triple negative breast cancer (TNBC) and ERα positive breast cancer (ER+BC), cancer tissue and adjacent normal epithelial ducts, and Caucasian and African American cases. 79 paraffin embedded breast carcinoma cases were obtained from Tulane University Hospital between 2007-2009. 39 cases represented TNBC (33-African Americans, 4-Caucasians, 2-unknowns) and 40 cases represented ER+BC (21-African Americans, 16-Caucasians, 3-unknowns). Immunohistochemistry was used to measure staining distribution and intensity of total Src and activated phospho-SrcY416 (p-Y416Src) in carcinoma tissue and adjacent normal mammary ducts. In TNBC and ER+BC, total Src was significantly higher in cancer compared to adjacent normal ducts (P<0.0001) in both cell membrane and cytoplasm. In membranes, p-Y416Src was elevated in cancer compared to normal ducts. Total Src in the tumor cytoplasm was significantly higher in TNBC compared to ER+BC (P = 0.0028); conversely, p-Y416Src in the tumor cell membranes was higher in TNBC compared to ER+BC (P = 0.0106). Comparison between African American (n = 21) and Caucasian ER+BC (n = 16) revealed no significant difference in expression and localization of total Src and p-Y416Src. TNBC cases positive for lymph node metastasis showed elevated membrane p-Y416Src compared to lymph node negative TNBC (P = 0.027).

Conclusion/significance: Total Src and p-Y416Src were expressed higher in cancer compared to adjacent normal ducts. Cytoplasmic total Src and membrane p-Y416Src were significantly higher in TNBC compared to ER+BC. TNBC cases with lymph node metastasis showed elevated membrane p-Y416Src. Taken together, Src was elevated in the membrane and cytoplasm of more aggressive TNBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033017PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310861PMC
August 2012

Post-translational modifications of nuclear receptors and human disease.

Nucl Recept Signal 2012 27;10:e001. Epub 2012 Feb 27.

Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy's Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1621/nrs.10001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309075PMC
May 2012

KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor α positive breast cancer.

Breast Cancer Res Treat 2012 Apr 21;132(2):391-409. Epub 2011 Apr 21.

Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.

KX-01 is the first clinical Src inhibitor of the novel peptidomimetic class that targets the peptide substrate site of Src providing more specificity toward Src kinase. The present study was designed to evaluate the effects of KX-01 as a single agent and in combination with tamoxifen (TAM) on cell growth and apoptosis of ERα positive breast cancer in vitro and in vivo. Flow cytometry demonstrated that KX-01 induced cell cycle arrest in G2/M phase. Immunofluorescent staining for mitotic phase markers and TUNEL staining indicated that cells had arrested in the mitotic phase and mitotic arrested cells were undergoing apoptosis. KX-01 induced nuclear accumulation of cyclin B1, and activation of CDK1, MPM2, and Cdc25C that is required for progression past the G2/M checkpoint. Apoptosis resulted from activation of caspases 6, 7, 8, and 9. Combinational index analysis revealed that combinations of KX-01 with TAM resulted in synergistic growth inhibition of breast cancer cell lines. KX-01 combined with TAM resulted in decreased ERα phosphorylation at Src-regulated phosphorylation sites serines 118 and 167 that were associated with reduced ERα transcriptional activity. Orally administered KX-01 resulted in a dose dependent growth inhibition of MCF-7 tumor xenografts, and in combination with TAM exhibited synergistic growth inhibition. Immunohistochemical analysis revealed that combinational treatment reduced angiogenesis, and ERα signaling in tumors compared to either drug alone that may underlie the synergistic tumor growth inhibition. Combinations of KX-01 with endocrine therapy present a promising new strategy for clinical management of ERα positive breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-011-1513-3DOI Listing
April 2012

Identification of a small molecule class to enhance cell-cell adhesion and attenuate prostate tumor growth and metastasis.

Mol Cancer Ther 2009 Mar 10;8(3):509-20. Epub 2009 Mar 10.

Department of Pharmaceutical Sciences, University of Louisiana College of Pharmacy, 1800 Bienville Drive, Monroe, LA 71209, USA.

Expression of calcitonin (CT) and its receptor (CTR) is elevated in advanced prostate cancer, and activated CT-CTR autocrine axis plays a pivotal role in tumorigenicity and metastatic potential of multiple prostate cancer cell lines. Recent studies suggest that CT promotes prostate cancer metastasis by reducing cell-cell adhesion through the disassembly of tight and adherens junctions and activation of beta-catenin signaling. We attempted to identify a class of molecules that enhances cell-cell adhesion of prostate cells and reverses the disruptive actions of CT on tight and adherens junctions. Screening several compounds led to the emergence of phenyl-methylene hydantoin (PMH) as a lead candidate that can augment cell-cell adhesion and abolish disruptive actions of CT on junctional complexes. PMH reduced invasiveness of PC-3M cells and abolished proinvasive actions of CT. Importantly, PMH did not display significant cytotoxicity on PC-3M cells at the tested doses. I.p. administered PMH and its S-ethyl derivative remarkably decreased orthotopic tumor growth and inhibited the formation of tumor micrometastases in distant organs of nude mice. PMH treatment also reduced the growth of spontaneous tumors in LPB-Tag mice to a significant extent without any obvious cytotoxic effects. By virtue of its ability to stabilize cell junctions, PMH could reverse the effect of CT on junctional disruption and metastasis, which strengthens the possibility of using PMH as a potential drug candidate for CT-positive androgen-independent prostate cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-08-0693DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748671PMC
March 2009

Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products.

Bioorg Med Chem 2009 Feb 29;17(4):1731-8. Epub 2008 Dec 29.

Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.

The Red Sea sponge Hemimycale arabica afforded the known (Z)-5-(4-hydroxybenzylidene)-hydantoin (1), (R)-5-(4-hydroxybenzyl)hydantoin (2), and (Z)-5-((6-bromo-1H-indol-3-yl)methylene)-hydantoin (3). The natural phenylmethylene hydantoin (PMH) 1 and the synthetic (Z)-5-(4-(ethylthio)benzylidene)-hydantoin (4) showed potent in vitro anti-growth and anti-invasive properties against PC-3M prostate cancer cells in MTT and spheroid disaggregation assays. PMHs 1 and 4 also showed significant anti-invasive activities in orthotopic xenograft and transgenic mice models. To study the effect of electronic and lipophilic parameters on the activity, a wide array of several substituted aldehydes possessing electron-withdrawing (+sigma), lipophilic (+pi), electron-donating (-sigma), and less lipophilic substituents (-pi) were used to synthesize several PMHs. Few des-phenylmethylenehydantoins and 2-thiohydanoins were also synthesized and the anti-invasive activities of all compounds were evaluated. Comparative molecular field analysis (CoMFA) was then used to study the 3D QSAR. Predictive 3D QSAR model with conventional r(2) and cross validated coefficient (q(2)) values up to 0.910 and 0.651 were established. In conclusion, PMH is a novel antimetastatic lead class with potential to control metastatic prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.12.053DOI Listing
February 2009

Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer.

J Biol Chem 2009 Jan 9;284(2):1018-30. Epub 2008 Nov 9.

Department of Pharmacology, University of Louisiana College of Pharmacy, Monroe, Louisiana 71209, USA.

Calcitonin, a neuroendocrine peptide, and its receptor are localized in the basal epithelium of benign prostate but in the secretory epithelium of malignant prostates. The abundance of calcitonin and calcitonin receptor mRNA displays positive correlation with the Gleason grade of primary prostate cancers. Moreover, calcitonin increases tumorigenicity and invasiveness of multiple prostate cancer cell lines by cyclic AMP-dependent protein kinase-mediated actions. These actions include increased secretion of matrix metalloproteinases and urokinase-type plasminogen activator and an increase in prostate cancer cell invasion. Activation of calcitonin-calcitonin receptor autocrine loop in prostate cancer cell lines led to the loss of cell-cell adhesion, destabilization of tight and adherens junctions, and internalization of key integral membrane proteins. In addition, the activation of calcitonin-calcitonin receptor axis induced epithelial-mesenchymal transition of prostate cancer cells as characterized by cadherin switch and the expression of the mesenchymal marker, vimentin. The activated calcitonin receptor phosphorylated glycogen synthase kinase-3, a key regulator of cytosolic beta-catenin degradation within the WNT signaling pathway. This resulted in the accumulation of intracellular beta-catenin, its translocation in the nucleus, and transactivation of beta-catenin-responsive genes. These results for the first time identify actions of calcitonin-calcitonin receptor axis on prostate cancer cells that lead to the destabilization of cell-cell junctions, epithelial-to-mesenchymal transition, and activation of WNT/beta-catenin signaling. The results also suggest that cyclic AMP-dependent protein kinase plays a key role in calcitonin receptor-induced destabilization of cell-cell junctions and activation of WNT-beta-catenin signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M807823200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613615PMC
January 2009

Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways.

Endocr Relat Cancer 2008 Dec 10;15(4):953-64. Epub 2008 Sep 10.

Division of Pharmacology, University of Louisiana College of Pharmacy, 700 University Avenue, Monroe, Louisiana 71209, USA.

Expression of calcitonin (CT) and its receptor (CTR) is elevated in advanced prostate cancer (PC). Although the significance of CT-CTR axis in PC cell growth, invasion, and epithelial to mesenchymal transition has been established, its role in tumor metastasis has not been examined. To examine the role of CT-CTR axis in tumor metastasis, we employed stable CT-CTR activated and silenced system of three PC cell lines, LNCaP cells that lack endogenous CT, PC-3 cells that lack endogenous CTR, and PC-3M cells that co-express CT and CTR. Enforced expression of CT in LNCaP cells and CTR in PC-3 cells increased their ability to form orthotopic tumors and distant metastases in multiple organs. By contrast, silencing of CT expression in PC-3M cells not only reduced their tumorigenicity, but also completely abrogated their metastatic potential. To investigate the effect of in vivo silencing of CT expression on tumor growth, we employed recombinant adeno-associated virus (rAAV) to deliver anti-CT ribozymes in preexisting tumors of nude mice and large probasin promoter (LPB)-Tag transgenic mice. rAAV-CT(-) treatment not only abrogated the growth of pre-implanted tumors in nude mice, but also significantly reduced the growth of spontaneous tumors in LPB-Tag mice. Analysis of CT upregulated and silenced PC-3M transcriptomes revealed 105 genes affected by the modulation of CT expression. These CT signature genes generated survival, adhesion, pro-inflammatory, and pro-metastatic pathways. Added together, these data indicate a pivotal role for CT-CTR axis in PC metastasis and may serve as a potential therapeutic target for advanced PC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1677/ERC-08-0136DOI Listing
December 2008

Calcitonin increases tumorigenicity of prostate cancer cells: evidence for the role of protein kinase A and urokinase-type plasminogen receptor.

Mol Endocrinol 2006 Aug 30;20(8):1894-911. Epub 2006 Mar 30.

Pharmacology, University of Louisiana College of Pharmacy, Monroe, 71209, USA.

The expression of human (h) calcitonin (CT) and its receptor (CTR) is localized to basal epithelium in benign prostates but is distributed in whole epithelium of malignant prostates. Moreover, the abundance of hCT and CTR mRNA in primary prostate tumors positively correlates with the tumor grade. We tested the hypothesis that the modulation of endogenous hCT expression of prostate cancer (PC) cell lines alters their oncogenicity. The effect of modulation of hCT expression on oncogenic characteristics was examined in LNCaP and PC-3M cell lines. The endogenous hCT expression was modulated using either constitutively active expression vector containing hCT cDNA or anti-hCT hammerhead ribozymes. The changes in the oncogenicity of cell sublines was assessed with cell proliferation assays, invasion assays, colony formation assays, and in vivo growth in athymic nude mice. Up-regulation of hCT in PC-3M cells and or enforced hCT expression in LNCaP cells dramatically enhanced their oncogenic characteristics. In contrast, the down-regulation of hCT in PC-3M cells led to a dramatic decline in their oncogenicity. These results, when combined with our other results, that the expression of hCT in primary PCs increase with tumor grade, suggest an important role for hCT in the progression of PC to a metastatic phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2005-0284DOI Listing
August 2006
-->