Publications by authors named "Murali K Temburni"

7 Publications

  • Page 1 of 1

Assessment of the Effects of Endocrine Disrupting Compounds on the Development of Vertebrate Neural Network Function Using Multi-electrode Arrays.

J Vis Exp 2018 04 26(134). Epub 2018 Apr 26.

Department of Biological Sciences, Delaware State University;

Bis-phenols, such as bis-phenol A (BPA) and bis-phenol-S (BPS), are polymerizing agents widely used in the production of plastics and numerous everyday products. They are classified as endocrine disrupting compounds (EDC) with estradiol-like properties. Long-term exposure to EDCs, even at low doses, has been linked with various health defects including cancer, behavioral disorders, and infertility, with greater vulnerability during early developmental periods. To study the effects of BPA on the development of neuronal function, we used an in vitro neuronal network derived from the early chick embryonic brain as a model. We found that exposure to BPA affected the development of network activity, specifically spiking activity and synchronization. A change in network activity is the crucial link between the molecular target of a drug or compound and its effect on behavioral outcome. Multi-electrode arrays are increasingly becoming useful tools to study the effects of drugs on network activity in vitro. There are several systems available in the market and, although there are variations in the number of electrodes, the type and quality of the electrode array and the analysis software, the basic underlying principles, and the data obtained is the same across the different systems. Although currently limited to analysis of two-dimensional in vitro cultures, these MEA systems are being improved to enable in vivo network activity in brain slices. Here, we provide a detailed protocol for embryonic exposure and recording neuronal network activity and synchrony, along with representative results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/56300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100960PMC
April 2018

Long-term Behavioral and Reproductive Consequences of Embryonic Exposure to Low-dose Toxicants.

J Vis Exp 2018 03 6(133). Epub 2018 Mar 6.

Department of Biological Sciences, Delaware State University;

Bisphenols, such as bisphenol A (BPA) and bisphenol S (BPS) are polymerizing agents widely used in the production of plastics and numerous everyday-use products. Based on their chemical structure and estradiol-like biological properties, they have been classified as endocrine disrupting compounds (EDC). Long-term exposure to EDCs, even at low doses, has been linked to various health defects including cancer, behavioral disorders and infertility, with greater vulnerability indicated during early developmental periods. Cellular and molecular studies with the genetically tractable nematode model Caenorhabditis elegans have demonstrated that exposure to BPA causes apoptosis, embryonic lethality and disruption in the DNA repair mechanisms. We have previously reported that exposure of C. elegans embryos to low doses of different bisphenols decreases fecundity. In addition, we have shown that the effects of exposure during the very early stages of development persist into adulthood as assayed by quantifying habituation behavior, a form of non-associative learning. Here, we provide detailed protocols for embryonic exposure to low-dose EDCs as well as the associated fecundity and anterior touch habituation assays, along with representative results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/56771DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931445PMC
March 2018

L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor.

Clin Exp Metastasis 2013 Apr 1;30(4):507-20. Epub 2012 Dec 1.

Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.

The L1CAM cell adhesion/recognition molecule (L1, CD171) and fibroblast growth factor receptor (FGFR) both are expressed by human high-grade glioma cells, but their potential actions in controlling cell behavior have not been linked. L1 actions in cancer cells have been attributed mainly to integrin receptors, and we demonstrated previously that L1-stimulated glioma cell migration correlates with integrin expression, increased focal adhesion kinase activation and focal complex turnover. Our analyses of datasets revealed FGFR is overexpressed in glioma regardless of grade, while ADAM10 metalloprotease expression increases with glioma grade. Here, we used dominant-negative and short hairpin RNA approaches to inhibit the activation of FGFR1 and expression of L1, respectively. An L1 peptide that inhibits L1-FGFR interaction and PD173074, a chemical inhibitor of FGFR1 activity, also were used to elucidate the involvement of L1-FGFR interactions on glioma cell behavior. Time-lapse cell motility studies and flow cytometry cell cycle analyses showed that L1 operates to increase glioma cell motility and proliferation through FGFR activation. Shutdown of both L1 expression and FGFR activity in glioma cells resulted in a complete termination of cell migration in vitro. These studies show for the first time that soluble L1 ectodomain (L1LE) acts on glioma cells through FGFRs, and that FGFRs are used by glioma cells for increasing motility as well as proliferation in response to activation by L1LE ligand. Thus, effective treatment of high-grade glioma may require simultaneous targeting of L1, FGFRs, and integrin receptors, which would reduce glioma cell motility as well as proliferation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10585-012-9555-4DOI Listing
April 2013

Light-activated gene expression directs segregation of co-cultured cells in vitro.

ACS Chem Biol 2010 Mar;5(3):313-20

Departments of Chemistry and Biochemistry and Biological Sciences, University of Delaware, Newark, 19716, USA.

Light-directed gene patterning methods have been described as a means to regulate gene expression in a spatially and temporally controlled manner. Several methods have been reported that use photocaged forms of small molecule effectors to control ligand-dependent transcription factors. Whereas these methods offer many advantages including high specificity and transient light-sensitivity, the free diffusion of the uncaged effector can limit both the magnitude and resolution of localized gene induction. Methods to date have been limited by the small fraction of irradiated cells that have expression levels significantly above uninduced background and have not been shown to affect a defined biological response. The tetracycline-dependent transactivator/transrepressor system, RetroTET-ART, combined with a photocaged form of doxycycline (NvOC-Dox) can be used to form photolithographic patterns of induced expression wherein up to 85% of the patterned cells show expression levels above uninduced regions. The efficiency and inducibility of the RetroTET-ART system allows one to quantitatively measure the limits of resolution and the relative induction levels mediated by a small molecule photocaged effector for the first time. Well-defined patterns of reporter genes were reproducibly formed within 6-36 h with feature sizes as small as 300 microm. After photo-patterning, NvOC-Dox can be rapidly removed, rendering cells photoinsensitive and allowing one to monitor GFP product formation in real time. Patterned co-expression of the cell surface ligand ephrin A5 on cell monolayers creates well-defined patterns that are sufficient to direct and segregate co-cultured cells via either attractive or repulsive signaling cues. The ability to direct the arrangement of cells on living cell monolayers through the action of light may serve as a model system for engineering artificial tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/cb9002305DOI Listing
March 2010

Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule.

Cancer Cell Int 2009 Oct 29;9:27. Epub 2009 Oct 29.

Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.

Background: Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines.

Results: L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding alphavbeta5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies.

Conclusion: Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1475-2867-9-27DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776596PMC
October 2009

Automated time-lapse microscopy and high-resolution tracking of cell migration.

Cytotechnology 2006 May 8;51(1):7-19. Epub 2006 Aug 8.

Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE, 19716, USA.

We describe a novel fully automated high-throughput time-lapse microscopy system and evaluate its performance for precisely tracking the motility of several glioma and osteoblastic cell lines. Use of this system revealed cell motility behavior not discernable with conventional techniques by collecting data (1) from closely spaced time points (minutes), (2) over long periods (hours to days), (3) from multiple areas of interest, (4) in parallel under several different experimental conditions. Quantitation of true individual and average cell velocity and path length was obtained with high spatial and temporal resolution in "scratch" or "wound healing" assays. This revealed unique motility dynamics of drug-treated and adhesion molecule-transfected cells and, thus, this is a considerable improvement over current methods of measurement and analysis. Several fluorescent vital labeling methods commonly used for end-point analyses (GFP expression, DiO lipophilic dye, and Qtracker nanocrystals) were found to be useful for time-lapse studies under specific conditions that are described. To illustrate one application, fluorescently labeled tumor cells were seeded onto cell monolayers expressing ectopic adhesion molecules, and this resulted in consistently reduced tumor cell migration velocities. These highly quantitative time-lapse analysis methods will promote the creation of new cell motility assays and increase the resolution and accuracy of existing assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10616-006-9006-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449480PMC
May 2006

Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal nicotinic postsynaptic complex.

Mol Cell Neurosci 2008 Jun 4;38(2):138-52. Epub 2008 Mar 4.

Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.

The neuronal nicotinic synapse plays a central role in normal cognitive and autonomic function. Molecular mechanisms that direct the assembly of this synapse remain poorly defined, however. We show here that adenomatous polyposis coli (APC) organizes a multi-molecular complex that is essential for targeting alpha3(*)nAChRs to synapses. APC interaction with microtubule plus-end binding protein EB1 is required for alpha3(*)nAChR surface membrane insertion and stabilization. APC brings together EB1, the key cytoskeletal regulators macrophin and IQGAP1, and 14-3-3 adapter protein at nicotinic synapses. 14-3-3, in turn, links the alpha3-subunit to APC. This multi-molecular APC complex stabilizes the local microtubule and F-actin cytoskeleton and links postsynaptic components to the cytoskeleton--essential functions for controlling the molecular composition and stability of synapses. This work identifies macrophin, IQGAP1 and 14-3-3 as novel nicotinic synapse components and defines a new role for APC as an in vivo coordinator of nicotinic postsynaptic assembly in vertebrate neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2008.02.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2502068PMC
June 2008