Publications by authors named "Muhammad S Nawaz"

10 Publications

  • Page 1 of 1

Sequence Variants in TAAR5 and Other Loci Affect Human Odor Perception and Naming.

Curr Biol 2020 12 8;30(23):4643-4653.e3. Epub 2020 Oct 8.

deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland. Electronic address:

Olfactory receptor (OR) genes in humans form a special class characterized by unusually high DNA sequence diversity, which should give rise to differences in perception and behavior. In the largest genome-wide association study to date based on olfactory testing, we investigated odor perception and naming with smell tasks performed by 9,122 Icelanders, with replication in a separate sample of 2,204 individuals. We discovered an association between a low-frequency missense variant in TAAR5 and reduced intensity rating of fish odor containing trimethylamine (p.Ser95Pro, p = 5.6 × 10). We demonstrate that TAAR5 genotype affects aversion to fish odor, reflected by linguistic descriptions of the odor and pleasantness ratings. We also discovered common sequence variants in two canonical olfactory receptor loci that associate with increased intensity and naming of licorice odor (trans-anethole: lead variant p.Lys233Asn in OR6C70, p = 8.8 × 10 and p = 1.4 × 10) and enhanced naming of cinnamon (trans-cinnamaldehyde; intergenic variant rs317787-T, p = 5.0 × 10). Together, our results show that TAAR5 genotype variation influences human odor responses and highlight that sequence diversity in canonical OR genes can lead to enhanced olfactory ability, in contrast to the view that greater tolerance for mutations in the human OR repertoire leads to diminished function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2020.09.012DOI Listing
December 2020

Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder.

Transl Psychiatry 2019 10 17;9(1):258. Epub 2019 Oct 17.

deCODE genetics/Amgen, Reykjavík, Iceland.

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5-BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-019-0599-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797719PMC
October 2019

Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function.

Protein Pept Lett 2019 ;26(9):636-647

Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.

MOFs are porous materials with adjustable porosity ensuing a tenable surface area and stability. MOFs consist of metal containing joint where organic ligands are linked with coordination bonding rendering a unique architecture favouring the diverse applications in attachment of enzymes, Chemical catalysis, Gases storage and separation, biomedicals. In the past few years immobilization of soluble enzymes on/in MOF has been the topic of interest for scientists working in diverse field. The activity of enzyme, reusability, storage, chemical and thermal stability, affinity with substrate can be greatly improved by immobilizing of enzyme on MOFs. Along with improvement in enzymes properties, the high loading of enzyme is also observed while using MOFs as immobilization support. In this review a detail study of immobilization on/in Metalorganic Frameworks (MOFs) have been described. Furthermore, strategies for the enzyme immobilization on MOFs and resulting in improved catalytic performance of immobilized enzymes have been reported.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866526666190430120046DOI Listing
October 2019

Interrogating the Genetic Determinants of Tourette's Syndrome and Other Tic Disorders Through Genome-Wide Association Studies.

Am J Psychiatry 2019 03;176(3):217-227

The Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston (Yu, Illmann, Osiecki, Smoller, Pauls, Neale, Scharf); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass. (Yu, Neale, Scharf); the Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles (Sul, Huang, Zelaya, Ophoff, Freimer, Coppola); the Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Sul, Huang, Zelaya, Freimer, Coppola); the Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece (Tsetsos); the Department of Biological Sciences, Purdue University, West Lafayette, Ind. (Tsetsos, Paschou); deCODE Genetics/Amgen, Reykjavik, Iceland (Nawaz, H. Stefansson, K. Stefansson); the Bioinformatics Interdepartmental Program, University of California, Los Angeles (Huang, Zelaya); the Department of Psychiatry, University of California, San Francisco (Darrow); the Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (Hirschtritt, Willsey); the Department of Psychiatry, Massachusetts General Hospital, Boston (Greenberg, Roffman, Buckner); the Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany (Muller-Vahl); the Institute of Human Genetics, Hannover Medical School, Hannover, Germany (Stuhrmann); McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal (Dion); the Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal (Rouleau); the Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna (Aschauer, Stamenkovic); Biopsychosocial Corporation, Vienna (Aschauer, Schlögelhofer); University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto (Sandor); the Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto (Barr); Johns Hopkins University School of Medicine, Baltimore (Grados, Singer); the Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany (Nöthen); the Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (Hebebrand, Hinney); the Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (King, Fernandez); the Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary (Barta); Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary (Tarnok, Nagy); the Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany (Depienne); Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris (Depienne, Worbe, Hartmann); French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris (Worbe, Hartmann); Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris (Worbe, Hartmann); Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York (Budman); Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy (Rizzo); the Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (Lyon); the Department of Psychiatry, University of Utah, Salt Lake City (McMahon); Children's Mercy Hospital, Kansas City, Mo. (Batterson); the Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands (Cath); the Department of Neurology, Fixel Center for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville (Malaty, Okun); Pennsylvania State University College of Medicine, Hershey (Berlin); Marquette University and University of Wisconsin-Milwaukee, Milwaukee (Woods); Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu (Lee); Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston (Jankovic); the Division of Psychiatry, Department of Neuropsychiatry, University College London (Robertson); the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati (Gilbert); Children's Hospital of Philadelphia, Philadelphia (Brown); the Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami (Coffey); the Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands (Dietrich, Hoekstra); University of Iowa Carver College of Medicine, Iowa City (Kuperman); the Department of Pediatrics, University of Washington, Seattle (Zinner); the Department of Pediatrics, Landspitalinn University Hospital, Reykjavik, Iceland (Luðvigsson, Thorarensen); the Faculty of Medicine, University of Iceland, Reykjavík, Iceland (Sæmundsen, Stefansson); the State Diagnostic and Counselling Centre, Kópavogur, Iceland (Sæmundsen); the Department of Genetics and the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Atzmon, Barzilai); the Department of Human Biology, Haifa University, Haifa, Israel (Atzmon); the Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany (Wagner); the Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany (Moessner); SUNY Downstate Medical Center Brooklyn, New York (C.M. Pato, M.T. Pato, Knowles); the Athinoula A. Martinos Center for Biomedical Research, Department of Radiology, Massachusetts General Hospital, Charlestown (Roffman, Buckner); the Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Smoller); the Center for Brain Science and Department of Psychology, Harvard University, Cambridge, Mass. (Buckner); the Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco (Willsey); the Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway (Tischfield, Heiman); the Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam (Posthuma); the Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn. (Cox, Davis); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston (Neale); the Department of Psychiatry, Genetics Institute, University of Florida, Gainesville (Mathews); and the Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston (Scharf).

Objective: Tourette's syndrome is polygenic and highly heritable. Genome-wide association study (GWAS) approaches are useful for interrogating the genetic architecture and determinants of Tourette's syndrome and other tic disorders. The authors conducted a GWAS meta-analysis and probed aggregated Tourette's syndrome polygenic risk to test whether Tourette's and related tic disorders have an underlying shared genetic etiology and whether Tourette's polygenic risk scores correlate with worst-ever tic severity and may represent a potential predictor of disease severity.

Methods: GWAS meta-analysis, gene-based association, and genetic enrichment analyses were conducted in 4,819 Tourette's syndrome case subjects and 9,488 control subjects. Replication of top loci was conducted in an independent population-based sample (706 case subjects, 6,068 control subjects). Relationships between Tourette's polygenic risk scores (PRSs), other tic disorders, ascertainment, and tic severity were examined.

Results: GWAS and gene-based analyses identified one genome-wide significant locus within FLT3 on chromosome 13, rs2504235, although this association was not replicated in the population-based sample. Genetic variants spanning evolutionarily conserved regions significantly explained 92.4% of Tourette's syndrome heritability. Tourette's-associated genes were significantly preferentially expressed in dorsolateral prefrontal cortex. Tourette's PRS significantly predicted both Tourette's syndrome and tic spectrum disorders status in the population-based sample. Tourette's PRS also significantly correlated with worst-ever tic severity and was higher in case subjects with a family history of tics than in simplex case subjects.

Conclusions: Modulation of gene expression through noncoding variants, particularly within cortico-striatal circuits, is implicated as a fundamental mechanism in Tourette's syndrome pathogenesis. At a genetic level, tic disorders represent a continuous spectrum of disease, supporting the unification of Tourette's syndrome and other tic disorders in future diagnostic schemata. Tourette's PRSs derived from sufficiently large samples may be useful in the future for predicting conversion of transient tics to chronic tic disorders, as well as tic persistence and lifetime tic severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2018.18070857DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677250PMC
March 2019

MAP1B mutations cause intellectual disability and extensive white matter deficit.

Nat Commun 2018 08 27;9(1):3456. Epub 2018 Aug 27.

deCODE genetics/Amgen, Reykjavik, 101, Iceland.

Discovery of coding variants in genes that confer risk of neurodevelopmental disorders is an important step towards understanding the pathophysiology of these disorders. Whole-genome sequencing of 31,463 Icelanders uncovers a frameshift variant (E712KfsTer10) in microtubule-associated protein 1B (MAP1B) that associates with ID/low IQ in a large pedigree (genome-wide corrected P = 0.022). Additional stop-gain variants in MAP1B (E1032Ter and R1664Ter) validate the association with ID and IQ. Carriers have 24% less white matter (WM) volume (β = -2.1SD, P = 5.1 × 10), 47% less corpus callosum (CC) volume (β = -2.4SD, P = 5.5 × 10) and lower brain-wide fractional anisotropy (P = 6.7 × 10). In summary, we show that loss of MAP1B function affects general cognitive ability through a profound, brain-wide WM deficit with likely disordered or compromised axons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-05595-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110722PMC
August 2018

Inhibition of Butyrylcholinesterase with Fluorobenzylcymserine, An Experimental Alzheimer's Drug Candidate: Validation of Enzoinformatics Results by Classical and Innovative Enzyme Kinetic Analyses.

CNS Neurol Disord Drug Targets 2017 ;16(7):820-827

Drug Design & Development Section, Gerontology Research Center, Room 4B02, 5600 Nathan Shock Dr., Baltimore, MD 21224. United States.

Background: Selective butyrylcholinesterase (BuChE)-inhibition, increases acetylcholine (ACh) levels. In rodents, this inhibition is known to boost cognition. Also, this occurs without the typical unwanted adverse effects of acetylcholinesterase-inhibitors or AChE-Is. The novel compound, fluorobenzylcymserine (FBC), is derived from our effort to design a selective BuChE-inhibitor. Also, we wanted to check whether butyrylcholinesterase-inhibitors (BuChE-Is) possessed an edge over AChE-Is in Alzheimer's disease (AD) in terms of efficacy and/or tolerance.

Method: FBC was synthesized as reported earlier while enzymatic activity of BuChE was calculated by Ellman-technique. Molecular docking was performed using Autodock4.2. We applied classical as well as innovative analyses of enzyme-kinetics for exploring "FBC:human BuChE-interaction". The mode of inhibition and kinetic parameters were also determined.

Results: Docking results displayed two strong interacting sites for FBC. One of these binding sites was previously identified as a deep narrow groove having polar aromatic residues while a second site was identified during this study which displayed better interaction and was lined with aliphatic and sulphur containing residues. At low concentrations of BuChE, the IC50 was found to be very low i.e. 4.79 and 6.10 nM for 12 and 36 µg, respectively, whereas it increased exponentially by increasing the units of BuChE.

Conclusion: These analyses indicate that FBC is an interesting AD drug candidate that could provide a potent and partial mixed type of inhibition of human BuChE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527316666170207160606DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831670PMC
July 2018

TS-EUROTRAIN: A European-Wide Investigation and Training Network on the Etiology and Pathophysiology of Gilles de la Tourette Syndrome.

Front Neurosci 2016 23;10:384. Epub 2016 Aug 23.

Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.

Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2016.00384DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994475PMC
September 2016

Quinoline derivatives: candidate drugs for a class B G-protein coupled receptor, the calcitonin gene-related peptide receptor, a cause of migraines.

CNS Neurol Disord Drug Targets 2014 ;13(7):1130-9

Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.

Class B G-protein coupled receptors are involved in a wide variety of diseases and are a major focus in drug design. Migraines are a common problem, and one of their major causative agents is the class B G-protein coupled receptor, Calcitonin gene-related peptide (CGRP) receptor, a target for competitive drug discovery. The calcitonin receptor-like receptor generates complexes with a receptor activity-modifying protein, which determines the type of receptor protein formed. The CGRP receptor comprises a complex formed from the calcitonin receptor-like receptor and receptor activity-modifying protein 1. In this study, an in silico docking approach was used to target the calcitonin receptor-like receptor in the bound form with receptor activity-modifying protein 1 (CGRP receptor), as well as in the unbound form. In both cases, the resulting inhibitors bound to the same cavity of the calcitonin receptor-like receptor. The twelve evaluated compounds were competitive inhibitors and showed efficient inhibitory activity against the CGRP receptor and Calcitonin receptor-like receptor. The two studied quinoline derivatives demonstrated potentially ideal inhibitory activity in terms of binding interactions and low range nano-molar inhibition constants. These compounds could prove helpful in designing drugs for the effective treatment of migraines. We propose that quinoline derivatives possess inhibitory activity by disturbing CGRP binding in the trigeminovascular system and may be considered for further preclinical appraisal for the treatment of migraines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527313666140917111341DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201208PMC
July 2015

Computational study of human tyrosine hydroxylase mutants to uphold [4-(Propan-2-yl) Phenyl]Carbamic acid as a potential inhibitor.

CNS Neurol Disord Drug Targets 2014 ;13(7):1169-74

Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.

Neurodegenerative diseases that afflict nervous system are characterized by progressive nervous system dysfunction and associated with the one-set of many diseases like Segawa's syndrome (recessive form), autosomal recessive L-dopa-responsive dystonia, L-dopa non-responsive dystonia or progressive early-onset encephalopathy and recessive L-dopa-responsive parkinsonism. It has been reported that a number of mutations in coding regions, splice sites and promoter regions of tyrosine hydroxylase (TH) are associated with many such diseases. TH is responsible for catalyzing the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine. This reaction is considered as rate-limiting step in the biosynthesis of catecholamines, dopamine, norepinephrine and epinephrine, which has made TH an important target for drug development. In our previous study using comparative molecular docking approach, it was concluded that [4-(Propan-2-yl) Phenyl]Carbamic acid (PPCA) may serve as a potential inhibitor. By further extending, our focus is to determine the binding affinities of PPCA and mutated TH. 3D structures of mutated TH were predicted and subjected to molecular docking studies. PPCA was found to bind in the deep narrow groove lined with polar and aromatic amino acids in 14 out of 17 mutants under study (R202H, L205P, H215Y, G216S, T245P, F278P, T283M, R297W, R306H, C328F, A345V, L356M, T368M, Q381K, P461L, T463M and D467G). Our results corroborate efficient binding of PPCA with normal and mutated TH, indicating that PPCA might be a strong therapeutic candidate for the management of Parkinson's disease and other related disorders. It may be a valuable target for evaluation in preclinical models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527313666140917111905DOI Listing
July 2015

Exploring N(1)-p-fluorobenzyl-cymserine as an inhibitor of 5-lipoxygenase as a candidate for type 2 diabetes and neurodegenerative disorder treatment.

CNS Neurol Disord Drug Targets 2014 Mar;13(2):197-202

(N.H. Greig) Drug Design & Development Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

Developing a single selective ligand to a target relevant to two mechanistically interlinked diseases, such as type 2 diabetes mellitus (T2DM) and a neurodegenerative disorder, like Parkinson's disease or Alzheimer's disease, provides the potential for an effective treatment that may impact both. The enzyme 5-lipoxygenase (5-LOX) has been revealed responsible for producing fatty acid molecules, leukotrienes. These leukotrienes are known to produce inflammatory responses in asthma and allergic reactions, to induce a reduction of tyrosine hydroxylase in brain, and are involved in the development of cardiac strokes, obesity and type 2 diabetes. N(1)-p-fluorobenzyl-cymserine (FBC), an analogue of cymserine and a known cholineterase inhibitor, was evaluated for inhibition of pleiotropic 5-LOX in our study. The stable 3D structure of 5-LOX was obtained from the Protein Data Bank (PDB) database and was implied for homology modeling of four reported mutant models. Each generated model was submitted to the Protein Model Database (PMDB) and employed for measuring inhibition and ligand efficiency of FBC with support of molecular docking. For each model, normal as well as mutant, FBC yielded remarkable inhibition constant values, with exothermic free binding energies. The current study revealed a highly reactive narrow fissure near the non-heme iron binding pocket of 5-LOX that contains residues crucial for 5-LOX stability and FBC binding. Investigating the binding of FBC with stabilized and destabilized 5-LOX structures confirmed it as a candidate therapeutic inhibitor worthy of assessment in preclinical models of T2DM and neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/18715273113126660136DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807432PMC
March 2014
-->