Publications by authors named "Muhammad Almas Anjum"

4 Publications

  • Page 1 of 1

An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach.

Microsc Res Tech 2021 May 8. Epub 2021 May 8.

College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.

Coronavirus19 is caused due to infection in the respiratory system. It is the type of RNA virus that might infect animal and human species. In the severe stage, it causes pneumonia in human beings. In this research, hand-crafted and deep microscopic features are used to classify lung infection. The proposed work consists of two phases; in phase I, infected lung region is segmented using proposed U-Net deep learning model. The hand-crafted features are extracted such as histogram orientation gradient (HOG), noise to the harmonic ratio (NHr), and segmentation based fractal texture analysis (SFTA) from the segmented image, and optimum features are selected from each feature vector using entropy. In phase II, local binary patterns (LBPs), speeded up robust feature (Surf), and deep learning features are extracted using a pretrained network such as inceptionv3, ResNet101 from the input CT images, and select optimum features based on entropy. Finally, the optimum selected features using entropy are fused in two ways, (i) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are horizontally concatenated/fused (ii) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are combined/fused with deep features. The fused optimum features vector is passed to the ensemble models (Boosted tree, bagged tree, and RUSBoosted tree) in two ways for the COVID19 classification, (i) classification using fused hand-crafted features (ii) classification using fusion of hand-crafted features and deep features. The proposed methodology is tested /evaluated on three benchmark datasets. Two datasets employed for experiments and results show that hand-crafted & deep microscopic feature's fusion provide better results compared to only hand-crafted fused features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.23779DOI Listing
May 2021

Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning.

J Med Syst 2019 Dec 17;44(2):32. Epub 2019 Dec 17.

Division of Computer Science, Mathematics and Science, Collins College of Professional Studies, St. John's University, New York, USA.

Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices' intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-019-1483-2DOI Listing
December 2019

A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning.

J Med Syst 2019 Oct 23;43(11):326. Epub 2019 Oct 23.

Department of Electronics and Communication Engineering, Sahyadri College of Engineering & Management, Mangaluru, India.

Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth increases rapidly which may lead to death. It is, therefore desirable to diagnose/ detect brain tumor at an early stage that may increase the patient survival rate. The major objective of this research work is to present a new technique for the detection of tumor. The proposed architecture accurately segments and classifies the benign and malignant tumor cases. Different spatial domain methods are applied to enhance and accurately segment the input images. Moreover Alex and Google networks are utilized for classification in which two score vectors are obtained after the softmax layer. Further, both score vectors are fused and supplied to multiple classifiers along with softmax layer. Evaluation of proposed model is done on top medical image computing and computer-assisted intervention (MICCAI) challenge datasets i.e., multimodal brain tumor segmentation (BRATS) 2013, 2014, 2015, 2016 and ischemic stroke lesion segmentation (ISLES) 2018 respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-019-1453-8DOI Listing
October 2019

Brain tumor detection using statistical and machine learning method.

Comput Methods Programs Biomed 2019 Aug 17;177:69-79. Epub 2019 May 17.

College of EME, NUST, Islamabad, Pakistan.

Background And Objective: Brain tumor occurs because of anomalous development of cells. It is one of the major reasons of death in adults around the globe. Millions of deaths can be prevented through early detection of brain tumor. Earlier brain tumor detection using Magnetic Resonance Imaging (MRI) may increase patient's survival rate. In MRI, tumor is shown more clearly that helps in the process of further treatment. This work aims to detect tumor at an early phase.

Methods: In this manuscript, Weiner filter with different wavelet bands is used to de-noise and enhance the input slices. Subsets of tumor pixels are found with Potential Field (PF) clustering. Furthermore, global threshold and different mathematical morphology operations are used to isolate the tumor region in Fluid Attenuated Inversion Recovery (Flair) and T2 MRI. For accurate classification, Local Binary Pattern (LBP) and Gabor Wavelet Transform (GWT) features are fused.

Results: The proposed approach is evaluated in terms of peak signal to noise ratio (PSNR), mean squared error (MSE) and structured similarity index (SSIM) yielding results as 76.38, 0.037 and 0.98 on T2 and 76.2, 0.039 and 0.98 on Flair respectively. The segmentation results have been evaluated based on pixels, individual features and fused features. At pixels level, the comparison of proposed approach is done with ground truth slices and also validated in terms of foreground (FG) pixels, background (BG) pixels, error region (ER) and pixel quality (Q). The approach achieved 0.93 FG and 0.98 BG precision and 0.010 ER on a local dataset. On multimodal brain tumor segmentation challenge dataset BRATS 2013, 0.93 FG and 0.99 BG precision and 0.005 ER are acquired. Similarly on BRATS 2015, 0.97 FG and 0.98 BG precision and 0.015 ER are obtained. In terms of quality, the average Q value and deviation are 0.88 and 0.017. At the fused feature based level, specificity, sensitivity, accuracy, area under the curve (AUC) and dice similarity coefficient (DSC) are 1.00, 0.92, 0.93, 0.96 and 0.96 on BRATS 2013, 0.90, 1.00, 0.97, 0.98 and 0.98 on BRATS 2015 and 0.90, 0.91, 0.90, 0.77 and 0.95 on local dataset respectively.

Conclusion: The presented approach outperformed as compared to existing approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2019.05.015DOI Listing
August 2019