Publications by authors named "Muffarah Hamid Alharthi"

4 Publications

  • Page 1 of 1

Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study.

J Pers Med 2022 May 1;12(5). Epub 2022 May 1.

Department of Family medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.

Background: Sedentary lifestyles, urbanization and improvements in socio-economic status have had serious effects on the burden of diabetes across the world. Diabetes is one of the 10 leading causes of death globally, and individuals with diabetes have a 2-3-fold increased risk of all-cause mortality. Adipose tissue is increasingly understood as a highly active endocrine gland that secretes many biologically active substances, including adipocytokines. However, the exact and discrete pathophysiological links between obesity and T2DM are not yet fully elucidated.

Methods: In the current study, we present the association of five diverse adipocytokines, adiponectin, leptin, resistin, visfatin and chemerin, with T2DM in 87 patients (46 males and 41 females) with type 2 diabetes mellitus and 85 healthy controls (44 males and 41 females) from the Asir region of Saudi Arabia. The patients were divided into four groups: normal BMI, overweight, obese and severely obese. The baseline biochemical characteristics, including HbA1c and anthropometric lipid indices, such as BMI and waist-hip ratio, were determined by standard procedures, whereas the selected adipokine levels were assayed by ELISA.

Results: The results showed significantly decreased levels of adiponectin in the T2DM patients compared to the control group, and the decrease was more pronounced in obese and severely obese T2DM patients. Serum leptin levels were significantly higher in the females compared to the males in the controls as well as all the four groups of T2DM patients. In the male T2DM patients, a progressive increase was observed in the leptin levels as the BMI increased, although these only reached significantly altered levels in the obese and severely obese patients. The serum leptin levels were significantly higher in the severely obese female patients compared to the controls, patients with normal BMI, and overweight patients. The leptin/adiponectin ratio was significantly higher in the obese and severely obese patients compared to the controls, patients with normal BMI, and overweight patients in both genders. The serum resistin levels did not show any significant differences between the males and females in thr controls or in the T2DM groups, irrespective of the BMI status of the T2DM patients. The visfatin levels did not reveal any significant gender-based differences, but significantly higher levels of visfatin were observed in the T2DM patients, irrespective of their level of obesity, although the higher values were observed in the obese and highly obese patients. Similarly, the serum chemerin levels in the controls, as well as in T2DM patients, did not show any significant gender-based differences. However, in the T2DM patients, the chemerin levels showed a progressive increase, with the increase in BMI reaching highly significant levels in the obese and severely obese patients, respectively.

Conclusion: In summary, it is concluded that significantly altered concentrations of four adipokines, adiponectin, leptin, visfatin and chemerin, were found in the T2DM patient group compared to the controls, with more pronounced alterations observed in the obese and highly obese patients. Thus, it can be surmised that these four adipokines play a profound role in the onset, progression and associated complications of T2DM. In view of the relatively small sample size in our study, future prospective studies are needed on a large sample size to explore the in-depth relationship between adipokines and T2DM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jpm12050735DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143828PMC
May 2022

Differential impact of the angiotensin-converting enzyme-2 (ACE2 rs4343 G>A) and miR-196a2 rs11614913 C>T gene alterations in COVID-19 disease severity and mortality.

Exp Ther Med 2022 Jun 29;23(6):418. Epub 2022 Apr 29.

Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.

The recent coronavirus outbreak from Wuhan China in late 2019 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in a global pandemic of coronavirus-19 disease (COVID-19). Understating the underlying mechanism of the pathogenesis of coronavirus infection is important not only because it will help in accurate diagnosis and treatment of the infection but also in the production of effective vaccines. The infection begins when SARS-CoV-2 enters the cells through binding of its envelope glycoprotein to angiotensin-converting enzyme2 (ACE2). Gene variations of ACE2 and microRNA (miR)-196 are associated with viral infection and other diseases. The present study investigated the association of the ACE2 rs4343 G>A and miR-196a2 rs11614913 C>T gene polymorphisms with severity and mortality of COVID-19 using amplification refractory mutation system PCR in 117 COVID-19 patients and 103 healthy controls from three regions of Saudi Arabia. The results showed that ACE2 rs4343 GA genotype was associated with severity of COVID-19 (OR=2.10, P-value 0.0028) and ACE2 rs4343 GA was associated with increased mortality with OR=3.44, P-value 0.0028. A strong correlation between the ACE2 rs4343 G>A genotype distribution among COVID-19 patients was reported with respect to their comorbid conditions including sex (P<0.023), coronary artery disease (P<0.0001), oxygen saturation <60 mm Hg (P<0.0009) and antiviral therapy (0.003). The results also showed that the CT genotype and T allele of the miR-196a2 rs11614913 C>T were associated with decreased risk to COVID-19 with OR=0.76, P=0.006 and OR=0.54, P=0.005, respectively. These results need to be validated with future molecular genetic studies in a larger sample size and different populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/etm.2022.11345DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117950PMC
June 2022

Potential impact of , and gene abnormalities on the development and progression of type 2 diabetes mellitus in Asir and Tabuk regions of Saudi Arabia.

Mol Med Rep 2022 May 16;25(5). Epub 2022 Mar 16.

Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia.

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by persistent hyperglycemia and is associated with serious complications. The risk factors for T2DM include both genetic and lifestyle factors. Genome‑wide association studies have indicated the association of genetic variations with many diseases, including T2DM. Glucokinase (GCK) plays a key role in the regulation of insulin release in the pancreas and catalyzes the first step in glycolysis in the liver. Genetic alterations in the gene have been implicated in both hyperglycemia and hypoglycemia. MicroRNAs (miRNAs/miRs) are small non‑coding RNA molecules that are involved in the important physiological processes including glucose metabolism. In the present study, the association of the single nucleotide polymorphisms (SNPs) in the , and genes with susceptibility to T2DM in patients from two regions of Saudi Arabia were examined, using the tetra‑primer amplification refractory mutation system. The results showed that the AA genotype and the A allele of GCK rs1799884 were associated with T2DM [odds ratio (OR)=2.25, P=0.032 and OR=1.55, P=0.021, respectively]. Likewise, the CT genotype and T allele of rs11614913 were associated with an increased risk of T2DM (OR=2.36, P=0.0059 and OR=1.74, P=0.023, respectively). In addition, the CA genotype of rs6505162 C>A was found to be linked with T2DM (OR=2.12 and P=0.021). It was concluded in the present research study that gene variations in , and are potentially associated with an increased risk of T2DM. These results, in the future, may help in the identification and stratification of individuals susceptible to T2DM. Future longitudinal studies with larger sample sizes and in different ethnic populations are recommended to validate these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2022.12675DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941532PMC
May 2022

Strong Association of Angiotensin Converting Enzyme-2 Gene Insertion/Deletion Polymorphism with Susceptibility to SARS-CoV-2, Hypertension, Coronary Artery Disease and COVID-19 Disease Mortality.

J Pers Med 2021 Oct 27;11(11). Epub 2021 Oct 27.

Department of Family medicine, College of Medicine University of Bisha, Bisha 61922, Saudi Arabia.

Background: The ongoing outbreak of SARS-CoV-2 represents a significant challenge to international health. Several reports have highlighted the importance of ACE2 on the pathogenesis of COVID-19. The spike protein of SARS-CoV-2 efficiently binds to the angiotensin-converting enzyme 2 (ACE2) receptors and facilitates virus entry into the host cell. In the present study, we hypothesize that a functional insertion/deletion polymorphism-rs4646994 I/D and rs4240157 T > C in the ACE gene could be associated with SARS-CoV-2 infection and mortality.

Methodology: This study included 117 consecutive COVID-19 patients and 150 age matched healthy controls (ACE2-rs4646994 I/D) and 100 age matched healthy controls with ACE2 rs4240157 T > C. We used Mutation specific PCR (MSP) for ACE2-rs4646994 I/D genotyping and amplification refractory mutation system (ARMS-PCR) for ACE2 rs4240157 T > C genotyping.

Results: Results indicated that there were significant differences in the genotype distributions of ACE2-rs4646994 I/D polymorphisms ( < 0.030) and ACE2 rs4240157 T > C between COVID-19 patients and controls (-values < 0.05). Higher frequency of DD genotype (48.71%) and D allele (0.67) was reported in COVID-19 patients than controls. Our results showed that the ACE2-DD genotype was strongly associated with increased COVID-19 severity (OR 2.37 (95%) CI = (1.19-4.70), RR = 1.39 (1.09-1.77), < 0.013) and also a strong association was seen with ACE2-ID genotype with COVID-19 severity (OR 2.20 (95%) CI = (1.08-4.46), < 0.020) in the codominant model. In allelic comparison, the D allele was strongly associated with COVID-19 severity (OR 1.58 (95% CI) (1.11-2.27), RR 1.21 (1.05-1.41) < 0.010). A significant correlation of ACE2-I/D genotypes was reported with Age ( < 0.035), T2D ( < 0.0013), hypertension ( < 0.0031) and coronary artery disease ( < 0.0001). Our results indicated ACE2-DD genotype was strongly associated with increased COVID-19 mortality (OR 8.25 (95%) CI = (2.40 to 28.34), < 0.008) and also ACE2-DD + DI genotype was strongly associated with increased COVID-19 mortality with OR 4.74 (95%) CI = (1.5214 to 14.7915), < 0.007. A significant correlation was reported between COVID-19 patients and age matched controls ( < 0.0007). Higher frequency of heterozygosity TC (40%) followed by ACE2-CC genotype (24.78%) was reported among COVID-19 patients. Using multivariate analysis, ACE2-CT genotype was strong associated with SARS-CoV-2 severity with an OR 2.18 (95% CI) (1.92-3.99), < 0.010 and also ACE2-CC genotype was linked with COVID-19 severity with an OR 2.66 (95% CI) (1.53-4.62), < 0.005. A significant correlation of ACE2-T > C genotypes was reported with gender ( < 0.04), T2D ( < 0.035). ACE2-CC genotype was strongly associated with increased COVID-19 mortality OR 3.66 (95%) CI = (1.34 to 9.97), < 0.011 and also ACE2-C allele was associated with COVID-19 mortality OR 2, 01 (1.1761-3.45), < 0.010.

Conclusions: It is concluded that ACE-DD genotype and D allele was strongly associated with increased COVID-19 patient severity. In addition, ACE I/D polymorphism were strongly associated with advanced age, diabetes and ischemic heart disease in COVID-19 patients whereas ACE-II genotype was a protective factor against the development of severe COVID-19. ACE2-DD genotype was strongly associated with increased COVID-19 mortality. Additionally, ACE2-CC and CT genotypes were strongly associated with COVID-19 severity. Therefore, our study might be useful for identifying the susceptible population groups for targeted interventions and for making relevant public health policy decisions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jpm11111098DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621157PMC
October 2021
-->