Publications by authors named "Mu Mi-Duo"

3 Publications

  • Page 1 of 1

MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength.

Biomaterials 2021 Nov 5;279:121242. Epub 2021 Nov 5.

Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China. Electronic address:

Osteolysis at the tendon-bone interface can impair pullout strength during tendon-bone healing and lead to surgery failure, but the effects of clinical treatments are not satisfactory. Mesenchymal stem cell (MSC)-derived exosomes have been used as potent and feasible natural nanocarriers for drug delivery and have been proven to enhance tendon-bone healing strength, indicating that MSC-derived exosomes could be a promising therapeutic strategy. In this study, we explored Scleraxis (Scx) dynamically expressed in PDGFRα(+) bone marrow-derived mesenchymal stem cells (BMMSCs) during natural tendon-bone healing. Then, we investigated the role of PDGFRα(+) BMMSCs in tendon-bone healing after Scx overexpression as well as the underlying mechanisms. Our data demonstrated that Scx-overexpressing PDGFRα(+) BMMSCs (BMMSC) could efficiently inhibit peritunnel osteolysis and enhance tendon-bone healing strength by preventing osteoclastogenesis in an exosomes-dependent manner. Exosomal RNA-seq revealed that the abundance of a novel miRNA, miR-6924-5p, was highest among miRNAs. miR-6924-5p could directly inhibit osteoclast formation by binding to the 3'-untranslated regions (3'UTRs) of OCSTAMP and CXCL12. Inhibition of miR-6924-5p expression reversed the prevention of osteoclastogenic differentiation by BMMSC derived exosomes (BMMSC-exos). Local injection of BMMSC-exos or miR-6924-5p dramatically reduced osteoclast formation and improved tendon-bone healing strength. Furthermore, delivery of miR-6924-5p efficiently inhibited the osteoclastogenesis of human monocytes. In brief, our study demonstrates that BMMSC-exos or miR-6924-5p could serve as a potential therapy for the treatment of osteolysis during tendon-bone healing and improve the outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2021.121242DOI Listing
November 2021

Three-dimensional printed talar prosthesis with biological function for giant cell tumor of the talus: A case report and review of the literature.

World J Clin Cases 2021 May;9(13):3147-3156

Sports Medicine Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.

Background: Giant cell tumors (GCT) are most commonly seen in the distal femur. These tumors are uncommon in the small bones of the hand and feet, and a very few cases have been reported. A giant cell tumor of the talus is rarely seen clinically and could be a challenge to physicians.

Case Summary: We report a rare case of GCT of the talus in one patient who underwent a new reconstructive surgery technique using a three-dimensional (3D) printing talar prosthesis. The prosthesis shape was designed by tomographic image processing and segmentation using technology to match the intact side by mirror symmetry with 3D post-processing technologies. The patient recovered nearly full range of motion of the ankle after 6 mo. The visual analogue scale and American Orthopaedic Foot and Ankle Society scores were 1 and 89 points, respectively.

Conclusion: We demonstrated that 3D printing of a talar prosthesis is a beneficial option for GCT of the talus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12998/wjcc.v9.i13.3147DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080752PMC
May 2021

Three dimension printing talar prostheses for total replacement in talar necrosis and collapse.

Int Orthop 2021 09 5;45(9):2313-2321. Epub 2021 Mar 5.

The First Affiliated Hospital of Military Medical University of the Army, Chongqing, China.

Background: Reconstructing bone structures and stabilizing adjacent joints are clinical challenges in treating talar necrosis and collapse (TNC). 3D printing technology has been demonstrated to improve the accuracy of talar replacement. This study aimed to evaluate anatomical talar replacement and the clinical results.

Methods: Nine patients with TNC were enrolled between 2016 and 2020. The prosthetic shape and size were designed by CT post-processing and mirror symmetry technology. The clinical outcomes included radiographic parameters of the forefoot, hindfoot, and ankle alignment, ankle activity, recurrent pain, and peri-operative complications.

Results: After a mean follow-up of 23.17 ± 6.65 months, degenerative arthritis and prosthetic dislocation and other complications were not observed on plain radiographs. Each 3D-printed talar prosthesis was placed in the original anatomical position. The parameters which have significant changes pre-operative and post-operative are as follows: talar height, 27.59 ± 5.99 mm and 34.56 ± 3.54 mm (95% CI - 13.05 to - 0.87, t = 2.94, P = 0.032) and Meary's angle, 11.73 ± 4.79° and 4.45 ± 1.82° (95% CI 1.29~22.44, t = 2.89, P = 0.034). The AOFAS hindfoot score improved from 26.33 ± 6.62 to 79.67 ± 3.14 at the final follow-up (95% CI 43.36~63.30, t = 13.75, P = 0.000). The VAS score decreased from 6.33 ± 1.03 to 0.83 ± 0.75 (95% CI 4.40~6.60, t = 12.84, P = 0.000). The post-operative satisfaction scores regarding pain relief, activities of daily living, and return to recreational activities were good to excellent, and the change of activity range was statistically significant.

Conclusions: The 3D printing patient-specific total talar prostheses allowed anatomical reconstruction in TNC. This novel treatment with 3D-printed prostheses could serve as a reliable patient-specific alternative in TNC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00264-021-04992-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494653PMC
September 2021
-->