Explore (NY) 2018 Jan - Feb;14(1):76-85. Epub 2017 Oct 23.
Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, Ontario M6A 2E1, Canada; LC Campbell Cognitive Neurology Research Unit and Hurvitz Brain Science Research Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
Context: Despite a large literature on psi, which encompasses a range of experiences including putative telepathy (mind-mind connections), clairvoyance (perceiving distant objects or events), precognition (perceiving future events), and mind-matter interactions, there has been insufficient focus on the brain in relation to this controversial phenomenon. In contrast, our research is based on a novel neurobiological model suggesting that frontal brain systems act as a filter to inhibit psi and that the inhibitory mechanisms may relate to self-awareness.
Objective: To identify frontal brain regions that may inhibit psi.
Design: We used mind-matter interactions to study psi in two participants with frontal lobe damage. The experimental task was to influence numerical output of a Random Event Generator translated into movement of an arrow on a computer screen to the right or left. Brain MRI was analyzed to determine frontal volume loss.
Results: The primary area of lesion overlap between the participants was in the left medial middle frontal region, an area related to self-awareness, and involved Brodmann areas 9, 10, and 32. Both participants showed a significant effect in moving the arrow to the right, i.e., contralateral to the side of primary lesion overlap. Effect sizes were much larger compared to normal participants.
Conclusions: The medial frontal lobes may act as a biological filter to inhibit psi through mechanisms related to self-awareness. Neurobiological studies with a focus on the brain may open new avenues of research on psi and may significantly advance the state of this poorly understood field.