Publications by authors named "Moran Shalev"

19 Publications

  • Page 1 of 1

Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis.

Front Cell Dev Biol 2021 20;9:671210. Epub 2021 May 20.

Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.

Bone homeostasis is a complex, multi-step process, which is based primarily on a tightly orchestrated interplay between bone formation and bone resorption that is executed by osteoblasts and osteoclasts (OCLs), respectively. The essential physiological balance between these cells is maintained and controlled at multiple levels, ranging from regulated gene expression to endocrine signals, yet the underlying cellular and molecular mechanisms are still poorly understood. One approach for deciphering the mechanisms that regulate bone homeostasis is the characterization of relevant pathological states in which this balance is disturbed. In this article we describe one such "error of nature," namely the development of acute recessive osteopetrosis (ARO) in humans that is caused by mutations in sorting nexin 10 (SNX10) that affect OCL functioning. We hypothesize here that, by virtue of its specific roles in vesicular trafficking, SNX10 serves as a key selective regulator of the composition of diverse membrane compartments in OCLs, thereby affecting critical processes in the sequence of events that link the plasma membrane with formation of the ruffled border and with extracellular acidification. As a result, SNX10 determines multiple features of these cells either directly or, as in regulation of cell-cell fusion, indirectly. This hypothesis is further supported by the similarities between the cellular defects observed in OCLs form various models of ARO, induced by mutations in SNX10 and in other genes, which suggest that mutations in the known ARO-associated genes act by disrupting the same plasma membrane-to-ruffled border axis, albeit to different degrees. In this article, we describe the population genetics and spread of the original arginine-to-glutamine mutation at position 51 (R51Q) in SNX10 in the Palestinian community. We further review recent studies, conducted in animal and cellular model systems, that highlight the essential roles of SNX10 in critical membrane functions in OCLs, and discuss possible future research directions that are needed for challenging or substantiating our hypothesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2021.671210DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173195PMC
May 2021

An SNX10-dependent mechanism downregulates fusion between mature osteoclasts.

J Cell Sci 2021 May 11;134(9). Epub 2021 May 11.

Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.

Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.254979DOI Listing
May 2021

PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis.

FEBS J 2021 Feb 19. Epub 2021 Feb 19.

Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.

Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15778DOI Listing
February 2021

Massive osteopetrosis caused by non-functional osteoclasts in R51Q SNX10 mutant mice.

Bone 2020 07 8;136:115360. Epub 2020 Apr 8.

Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel. Electronic address:

The R51Q mutation in sorting nexin 10 (SNX10) was shown to cause a lethal genetic disease in humans, namely autosomal recessive osteopetrosis (ARO). We describe here the first R51Q SNX10 knock-in mouse model and show that mice homozygous for this mutation exhibit massive, early-onset, and widespread osteopetrosis. The mutant mice exhibit multiple additional characteristics of the corresponding human disease, including stunted growth, failure to thrive, missing or impacted teeth, occasional osteomyelitis, and a significantly-reduced lifespan. Osteopetrosis in this model is the result of osteoclast inactivity that, in turn, is caused by absence of ruffled borders in the mutant osteoclasts and by their inability to secrete protons. These results confirm that the R51Q mutation in SNX10 is a causative factor in ARO and provide a model system for studying this rare disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115360DOI Listing
July 2020

Phosphorylation of the phosphatase PTPROt at Tyr is a molecular switch that controls osteoclast activity and bone mass in vivo.

Sci Signal 2019 01 8;12(563). Epub 2019 Jan 8.

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.

Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr and its activating residue Tyr Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr caused PTPROt to dephosphorylate Src at the activating site pTyr In contrast, phosphorylation of PTPROt at Tyr enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aau0240DOI Listing
January 2019

The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts.

Biochim Biophys Acta Mol Cell Res 2019 01 17;1866(1):114-123. Epub 2018 Jul 17.

Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel. Electronic address:

Maintaining the proper balance between osteoblast-mediated production of bone and its degradation by osteoclasts is essential for health. Osteoclasts are giant phagocytic cells that are formed by fusion of monocyte-macrophage precursor cells; mature osteoclasts adhere to bone tightly and secrete protons and proteases that degrade its matrix. Phosphorylation of tyrosine residues in proteins, which is regulated by the biochemically-antagonistic activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is central in regulating the production of osteoclasts and their bone-resorbing activity. Here we review the roles of individual PTPs of the classical and dual-specificity sub-families that are known to support these processes (SHP2, cyt-PTPe, PTPRO, PTP-PEST, CD45) or to inhibit them (SHP1, PTEN, MKP1). Characterizing the functions of PTPs in osteoclasts is essential for complete molecular level understanding of bone resorption and for designing novel therapeutic approaches for treating bone disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2018.07.005DOI Listing
January 2019

Novel Compounds Targeting the Mitochondrial Protein VDAC1 Inhibit Apoptosis and Protect against Mitochondrial Dysfunction.

J Biol Chem 2016 Nov 13;291(48):24986-25003. Epub 2016 Oct 13.

From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,

Apoptosis is thought to play a critical role in several pathological processes, such as neurodegenerative diseases (i.e. Parkinson's and Alzheimer's diseases) and various cardiovascular diseases. Despite the fact that apoptotic mechanisms are well defined, there is still no substantial therapeutic strategy to stop or even slow this process. Thus, there is an unmet need for therapeutic agents that are able to block or slow apoptosis in neurodegenerative and cardiovascular diseases. The outer mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1) is a convergence point for a variety of cell survival and death signals, including apoptosis. Recently, we demonstrated that VDAC1 oligomerization is involved in mitochondrion-mediated apoptosis. Thus, VDAC1 oligomerization represents a prime target for agents designed to modulate apoptosis. Here, high-throughput compound screening and medicinal chemistry were employed to develop compounds that directly interact with VDAC1 and prevent VDAC1 oligomerization, concomitant with an inhibition of apoptosis as induced by various means and in various cell lines. The compounds protected against apoptosis-associated mitochondrial dysfunction, restoring dissipated mitochondrial membrane potential, and thus cell energy and metabolism, decreasing reactive oxidative species production, and preventing detachment of hexokinase bound to mitochondria and disruption of intracellular Ca levels. Thus, this study describes novel drug candidates with a defined mechanism of action that involves inhibition of VDAC1 oligomerization, apoptosis, and mitochondrial dysfunction. The compounds VBIT-3 and VBIT-4 offer a therapeutic strategy for treating different diseases associated with enhanced apoptosis and point to VDAC1 as a promising target for therapeutic intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M116.744284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122769PMC
November 2016

Circadian Clock Control by Polyamine Levels through a Mechanism that Declines with Age.

Cell Metab 2015 Nov 8;22(5):874-85. Epub 2015 Oct 8.

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel. Electronic address:

Polyamines are essential polycations present in all living cells. Polyamine levels are maintained from the diet and de novo synthesis, and their decline with age is associated with various pathologies. Here we show that polyamine levels oscillate in a daily manner. Both clock- and feeding-dependent mechanisms regulate the daily accumulation of key enzymes in polyamine biosynthesis through rhythmic binding of BMAL1:CLOCK to conserved DNA elements. In turn, polyamines control the circadian period in cultured cells and animals by regulating the interaction between the core clock repressors PER2 and CRY1. Importantly, we found that the decline in polyamine levels with age in mice is associated with a longer circadian period that can be reversed upon polyamine supplementation in the diet. Our findings suggest a crosstalk between circadian clocks and polyamine biosynthesis and open new possibilities for nutritional interventions against the decay in clock's function with age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2015.09.011DOI Listing
November 2015

Structural basis for selective targeting of leishmanial ribosomes: aminoglycoside derivatives as promising therapeutics.

Nucleic Acids Res 2015 Sep 11;43(17):8601-13. Epub 2015 Aug 11.

Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel

Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)-the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and has yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We also evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3: , as a prospective therapeutic candidate for the treatment of VL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkv821DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787808PMC
September 2015

The PXDLS linear motif regulates circadian rhythmicity through protein-protein interactions.

Nucleic Acids Res 2014 Oct 26;42(19):11879-90. Epub 2014 Sep 26.

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel

The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gku873DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231743PMC
October 2014

When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy.

Medchemcomm 2014 Aug;5(8):1092-1105

The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel.

Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various , and models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/C4MD00081ADOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136519PMC
August 2014

Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor.

Am J Respir Cell Mol Biol 2014 Apr;50(4):805-16

Departments of 1 Genetics.

New drugs are needed to enhance premature termination codon (PTC) suppression to treat the underlying cause of cystic fibrosis (CF) and other diseases caused by nonsense mutations. We tested new synthetic aminoglycoside derivatives expressly developed for PTC suppression in a series of complementary CF models. Using a dual-luciferase reporter system containing the four most prevalent CF transmembrane conductance regulator (CFTR) nonsense mutations (G542X, R553X, R1162X, and W1282X) within their local sequence contexts (the three codons on either side of the PTC), we found that NB124 promoted the most readthrough of G542X, R1162X, and W1282X PTCs. NB124 also restored full-length CFTR expression and chloride transport in Fischer rat thyroid cells stably transduced with a CFTR-G542XcDNA transgene, and was superior to gentamicin and other aminoglycosides tested. NB124 restored CFTR function to roughly 7% of wild-type activity in primary human bronchial epithelial (HBE) CF cells (G542X/delF508), a highly relevant preclinical model with endogenous CFTR expression. Efficacy was further enhanced by addition of the CFTR potentiator, ivacaftor (VX-770), to airway cells expressing CFTR PTCs. NB124 treatment rescued CFTR function in a CF mouse model expressing a human CFTR-G542X transgene; efficacy was superior to gentamicin and exhibited favorable pharmacokinetic properties, suggesting that in vitro results translated to clinical benefit in vivo. NB124 was also less cytotoxic than gentamicin in a tissue-based model for ototoxicity. These results provide evidence that NB124 and other synthetic aminoglycosides provide a 10-fold improvement in therapeutic index over gentamicin and other first-generation aminoglycosides, providing a promising treatment for a wide array of CFTR nonsense mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2013-0282OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068923PMC
April 2014

Chronic Akt1 deficiency attenuates adverse remodeling and enhances angiogenesis after myocardial infarction.

Circ Cardiovasc Imaging 2013 Nov 17;6(6):992-1000. Epub 2013 Oct 17.

Department of Biological Regulation.

Background: Akt1 is a key signaling molecule in multiple cell types, including endothelial cells. Accordingly, Akt1 was proposed as a therapeutic target for ischemic injury in the context of myocardial infarction (MI). The aim of this study was to use multimodal in vivo imaging to investigate the impact of systemic Akt1 deficiency on cardiac function and angiogenesis before and after MI.

Methods And Results: In vivo cardiac MRI was performed before and at days 1, 8, 15, and 29 to 30 after MI induction for wild-type, heterozygous, and Akt1-deficient mice. Noninfarcted hearts were imaged using ex vivo stereomicroscopy and microcomputed tomography. Histological examination was performed for noninfarcted hearts and for hearts at days 8 and 29 to 30 after MI. MRI revealed mildly decreased baseline cardiac function in Akt1 null mice, whereas ex vivo stereomicroscopy and microcomputed tomography revealed substantially reduced coronary macrovasculature. After MI, Akt1(-/-) mice demonstrated significantly attenuated ventricular remodeling and a smaller decrease in ejection fraction. At 8 days after MI, a larger functional capillary network at the remote and border zone, accompanied by reduced scar extension, preserved cardiac function, and enhanced border zone wall thickening, was observed in Akt1(-/-) mice when compared with littermate controls.

Conclusions: Using multimodal imaging to probe the role of Akt1 in cardiac function and remodeling after MI, this study revealed reduced adverse remodeling in Akt1-deficient mice after MI. Augmented myocardial angiogenesis coupled with a more functional myocardial capillary network may facilitate revascularization and therefore be responsible for preservation of infarcted myocardium.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCIMAGING.113.000828DOI Listing
November 2013

Identification of the molecular attributes required for aminoglycoside activity against Leishmania.

Proc Natl Acad Sci U S A 2013 Aug 29;110(33):13333-8. Epub 2013 Jul 29.

Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects millions of people worldwide. Aminoglycosides are mostly known as highly potent, broad-spectrum antibiotics that exert their antibacterial activity by selectively targeting the decoding A site of the bacterial ribosome, leading to aberrant protein synthesis. Recently, some aminoglycosides have been clinically approved and are currently used worldwide for the treatment of leishmaniasis; however the molecular details by which aminoglycosides induce their deleterious effect on Leishmaina is still rather obscure. Based on high conservation of the decoding site among all kingdoms, it is assumed that the putative binding site of these agents in Leishmania is the ribosomal A site. However, although recent X-ray crystal structures of the bacterial ribosome in complex with aminoglycosides shed light on the mechanism of aminoglycosides action as antibiotics, no such data are presently available regarding their binding site in Leishmania. We present crystal structures of two different aminoglycoside molecules bound to a model of the Leishmania ribosomal A site: Geneticin (G418), a potent aminoglycoside for the treatment of leishmaniasis at a 2.65-Å resolution, and Apramycin, shown to be a strong binder to the leishmanial ribosome lacking an antileishmanial activity at 1.4-Å resolution. The structural data, coupled with in vitro inhibition measurements on two strains of Leishmania, provide insight as to the source of the difference in inhibitory activity of different Aminoglycosides. The combined structural and physiological data sets the ground for rational design of new, and more specific, aminoglycoside derivatives as potential therapeutic agents against leishmaniasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1307365110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746865PMC
August 2013

Structural and functional differences between pheromonotropic and melanotropic PK/PBAN receptors.

Biochim Biophys Acta 2013 Nov 10;1830(11):5036-48. Epub 2013 Jul 10.

Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel.

Background: The pyrokinin/pheromone biosynthesis-activating neuropeptide (PK/PBAN) plays a major role in regulating a wide range of physiological processes in insects. The ubiquitous and multifunctional nature of the PK/PBAN peptide family raises many questions regarding the mechanisms by which these neuropeptides elicit their effects and the nature of the receptors that mediate their functions.

Methods: A sex pheromone gland receptor of the PK/PBAN family from Heliothis peltigera female moth and a Spodoptera littoralis larval receptor were cloned and stably expressed, and their structural models, electrostatic potentials and cellular functional properties were evaluated.

Results: Homology modeling indicated highly conserved amino-acid residues in appropriate structural positions as experimentally shown for class A G-protein coupled receptors. Structural differences could be proposed and electrostatic potentials of the two receptor models revealed net charge differences. Calcium mobilization assays demonstrated that both receptors were fully functional and could initiate extracellular calcium influx to start PK/PBAN signal transduction. Evaluation of the signaling response of both receptors to PBAN and diapause hormone (DH) revealed a highly sensitive, though differential response. Both receptors responded to PBAN whereas only Spl-PK/PBAN-R exhibited a high response toward DH.

Conclusions: The structural, electrostatic and cellular functional differences indicate that different PK/PBAN in vivo functions may be mediated by different PK/PBAN receptors and elicited by different peptide(s).

General Significance: The results advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that can serve as a basis for the development of new families of insect-control agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2013.06.041DOI Listing
November 2013

Development of generic immunoassay for the detection of a series of aminoglycosides with 6'-OH group for the treatment of genetic diseases in biological samples.

J Pharm Biomed Anal 2013 Mar 20;75:33-40. Epub 2012 Nov 20.

The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel.

Over the last two decades, a growing number of scientific evidences highlighted the potential therapeutic value of several structures of aminoglycoside antibiotics (including gentamicin and G418) for the treatment of various genetic diseases caused by nonsense mutations. These findings resulted in a fast evolvement of synthetic derivatives of aminoglycosides which were shown to be more target specific and less toxic than the clinically used antibiotics. The emerging progress in drug design and development has necessitated the urge to develop a fast, easy and accurate procedure for the determination of these potential therapeutic agents in various biologically derived matrices. Here we describe the preparation of a generic polyclonal antibody that was used for the development of homologous and heterologous immunoassays for the detection of a wide range of natural and synthetic aminoglycoside derivatives, highlighted today as potential therapeutic agents for the treatment of various genetic diseases. A common two-ring scaffold, NB82, present in the majority of compounds exhibiting potent biological activity, was used as a generic immunization hapten for the immunization of two rabbits. By using a series of chemical steps, NB82 was selectively conjugated via the N-1 position through glutaric acid linker to a carrier protein. Sensitivity (I₅₀) values for the recognition of three representative compounds NB82, NB84 and NB124 were determined to be 10 ± 3 ng mL⁻¹, 0.5 ± 0.04 μg mL⁻¹ and 1 ± 0.12 μg mL⁻¹, respectively. Limits of detection were determined to be 1 ± 0.3 ng mL⁻¹ for NB82, 20 ± 7 ng mL⁻¹ for NB84 and 15 ± 8 ng mL⁻¹ for NB124. The developed assays were further exploited for the in vivo monitoring of the therapeutic compounds in mice serum. Serum experimentations exhibited similar detection limits as observed for the PBS calibration experiments, demonstrating no interference with assays sensitivity, with rather high recovery ratios ranging from 92 to 107% in whole blood samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2012.11.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545275PMC
March 2013

Sol-Gel Entrapped Levonorgestrel Antibodies: Activity and Structural Changes as a Function of Different Polymer Formats.

Materials (Basel) 2011 Feb 25;4(3):469-486. Epub 2011 Feb 25.

Department of Entomology, Institute of Plant Protection, The Volcani Center, Bet Dagan 50250, Israel.

The paper describes development of a sol-gel based immunoaffinity method for the steroid hormone levonorgestrel (LNG) and the effects of changes in the sol-gel matrix format on the activity of the entrapped antibodies (Abs) and on matrix structure. The best sol-gel format for Ab entrapment was found to be a tetramethoxysilane (TMOS) based matrix at a TMOS:water ratio of 1:8, containing 10% polyethylene glycol (PEG) of MW 0.4 kDa. Addition of higher percentages of PEG or a higher MW PEG did not improve activity. No activity was obtained with a TMOS:water ratio of 1:12, most likely because of the very dense polymer that resulted from these polymerization conditions. Only minor differences in the non-specific binding were obtained with the various formats. TMOS was found to be more effective than tetrakis (2-hydroxyethyl)orthosilicate (THEOS) for entrapment of anti-levonorgestrel (LNG) Abs. However, aging the THEOS-based sol-gel for a few weeks at 4 °C stabilized the entrapped Abs and increased its binding capacity. Confocal fluorescent microscopy with fluorescein isothiocyanate (FITC) labeled immunoglobulines (IgGs) entrapped in the sol-gel matrix showed that the entrapped Abs were distributed homogenously within the gel. Scanning electron microscopy (SEM) images have shown the diverse structures of the various sol-gel formats and precursors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma4030469DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448502PMC
February 2011

Monitoring of progestins: development of immunochemical methods for purification and detection of levonorgestrel.

Anal Chim Acta 2010 Apr 23;665(2):176-84. Epub 2010 Mar 23.

Department of Entomology, Institute of Plant Protection, the Volcani Center, Bet Dagan 50250, Israel.

A polyclonal antibody (Ab) for the progestin levonorgestrel (LNG) was generated, and immunochemical assays for its detection, clean-up and concentration were developed. A highly specific microplate diagnostic assay for the detection of LNG was developed that used the enzyme linked immunosorbent assay (ELISA) method. The LNG ELISA developed was sensitive and reproducible; it exhibited I(50) and I(20) values of 3.3+/-1.8 ng mL(-1) and 0.6+/-0.4 ng mL(-1), respectively, and the Abs did not cross react with any of the tested steroid hormones. The above Abs were used to develop a sol-gel-based immunoaffinity purification (IAP) method for concentration and clean-up of LNG that is compatible with subsequent immunochemical or instrumental chemical analytical procedures, such as liquid chromatography followed by mass spectrometry (LC-MS/MS). Development of the columns included successful entrapment of Abs within a tetramethoxysilane (TMOS)-based SiO(2) polymer network. The Abs could bind the free analyte from solution, and the bound analyte could be easily eluted from the sol-gel matrix at high recoveries. The Ab selectivity towards the antigen was high, in both ELISA and the sol-gel columns, but the entrapped Abs cross-reacted with two other steroid hormones--ethynylestradiol (EE2) and nortestosterone (NT) - which share similar epitopes with LNG, despite the lack of cross reactivity in the ELISA. The validity of the method was investigated by LC-MS/MS and a good analytical correlation was obtained.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2010.03.029DOI Listing
April 2010