Publications by authors named "Monika Scholler"

6 Publications

  • Page 1 of 1

Pharmacological activation of LXRs decreases amyloid-β levels in Niemann-Pick type C model cells.

Curr Pharm Biotechnol 2013 ;14(6):582-93

Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, HR-10000 Zagreb, Croatia.

Niemann-Pick type C disease (NPC) is an inherited disorder mainly caused by loss-of-function mutations in the NPC1 gene, that lead to intracellular cholesterol accumulation and disturbed cholesterol homeostasis. Similarly to Alzheimer's disease (AD), NPC is associated with progressive neurodegeneration and altered metabolism of amyloid precursor protein (APP). Liver X receptors (LXRs), the key transcriptional regulators of cholesterol homeostasis, were reported to play neuroprotective roles in NPC mice. We investigated the impacts of LXRs on APP metabolism in mutant CHO cells lacking the NPC1 gene (-NPC1 cells). Pharmacological activation of LXRs in -NPC1 cells tended to reduce the ratio of total secreted APP (sAPP) to full length APP (flAPP) levels and sAPPβ levels as well as to increase the ratio of APP Cterminal fragments to flAPP levels, resulting in decreased levels of amyloid β (Aβ) peptides. -NPC1 cells treated with LXR agonist TO901317 (TO90) displayed a modest increase in cholesterol efflux to apolipoprotein A-I (apoA-I) but not to HDL3, or in the absence of extracellular cholesterol acceptors. The observed similar reduction of Aβ levels upon TO90 treatment in the presence or in the absence of extracellular apoA-I indicated a cholesterol-efflux independent effect of TO90 on Aβ levels. Furthermore, TO90 had no effect on the cholesterol synthesis rate in -NPC1 cells, while it reduced the rate of cholesterol esterification. The obtained results indicate that LXR activation may decrease Aβ levels in NPC1- deficient conditions. The underlying mechanism of this action does not appear to be related to effects on cholesterol efflux or synthesis rates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/138920101131400224DOI Listing
June 2014

Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.

Biochim Biophys Acta 2013 Apr 13;1831(4):737-46. Epub 2013 Jan 13.

Department of Obstetrics and Gynecology, Medical University of Graz, Austria.

In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p<0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p<0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2012.12.015DOI Listing
April 2013

Phospholipid transfer protein is differentially expressed in human arterial and venous placental endothelial cells and enhances cholesterol efflux to fetal HDL.

J Clin Endocrinol Metab 2012 Jul 6;97(7):2466-74. Epub 2012 Apr 6.

Institute of Pathophysiology and Immunology, Medical University of Graz, A-8010 Graz, Austria.

Context: Phospholipid (PL) transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism. In the fetal circulation, HDL particles are the main cholesterol carriers and are involved in maternal-fetal cholesterol transfer across human placental endothelial cells (HPEC).

Objective: The aim was to investigate local function(s) of PLTP at the fetoplacental endothelium. Because HPEC display morphological and functional diversity when isolated from arteries or veins, we hypothesized that PLTP activity may differ between arterial and venous HPEC.

Design: We determined PLTP mRNA and activity levels from isolated HPEC and investigated PLTP-mediated remodeling of fetal HDL particles and their capacity in mediating cholesterol efflux from HPEC.

Results: Incubation of fetal HDL with active human plasma PLTP resulted in increased particle size (12.6 vs. 13.2 nm, P < 0.05), with a concomitant increase (3.5-fold) in pre-β-mobile HDL particles. Arterial HPEC showed higher Pltp expression levels and secreted PL transfer activity (1.8-fold, P < 0.001) than venous HPEC. In contrast to adult HDL(3), [(3)H]cholesterol efflux to fetal HDL was 21% higher (P < 0.05) from arterial than from venous HPEC. PLTP-facilitated particle conversion increased the cholesterol efflux capacity of fetal HDL to similar extents (55 and 48%, P < 0.001) from arterial and venous HPEC, respectively.

Conclusion: PLTP mediates PL transfer and participates in reverse cholesterol transport pathways at the fetoplacental barrier. Enhanced cellular cholesterol efflux from HPEC to fetal HDL remodeled by PLTP supports the idea of a local atheroprotective role of PLTP in the placental vasculature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2011-2969DOI Listing
July 2012

Phospholipid transfer protein in the placental endothelium is affected by gestational diabetes mellitus.

J Clin Endocrinol Metab 2012 Feb 16;97(2):437-45. Epub 2011 Nov 16.

Institute of Pathophysiology and Immunology, Medical University of Graz, A-8036 Graz, Austria.

Context: Gestational diabetes mellitus (GDM) causes alterations in fetal high-density lipoproteins (HDL). Because phospholipid transfer protein (PLTP) is important for HDL (re)assembly and is expressed in the human placenta, we hypothesized that circulating fetal and/or placental PLTP expression and activity are altered in GDM.

Design: PLTP levels and activity were determined in maternal and fetal sera from GDM and controls. Placental PLTP was immunolocalized, and its expression was measured in placental tissue. PLTP regulation by glucose/insulin was studied in human endothelial cells isolated from placental vessels (HPEC).

Results: Placental Pltp expression was up-regulated in GDM (1.8-fold, P < 0.05). PLTP protein (5-fold, P < 0.01) and activity (1.4- to 2.5-fold) were higher in fetal than in maternal serum. The placental endothelium was identified as a major PLTP location. Insulin treatment of HPEC significantly increased secreted PLTP levels and activity. In GDM, fetal cholesterol, HDL-triglycerides and phospholipids were elevated compared with controls. Fetal PLTP activity was higher than maternal but unaltered in GDM.

Conclusion: HPEC contribute to the release of active PLTP into the fetal circulation. Pltp expression is increased in GDM with hyperglycemia and/or hyperinsulinemia contributing. High PLTP activity in fetal serum may enhance conversion of HDL into cholesterol-accepting particles, thereby increasing maternal-fetal cholesterol transfer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2011-1942DOI Listing
February 2012

Adipose triglyceride lipase affects triacylglycerol metabolism at brain barriers.

J Neurochem 2011 Dec 20;119(5):1016-28. Epub 2011 Oct 20.

Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria.

Currently, little is known about the role of intracellular triacylglycerol (TAG) lipases in the brain. Adipose triglyceride lipase (ATGL) is encoded by the PNPLA2 gene and catalyzes the rate-limiting step of lipolysis. In this study, we investigated the effects of ATGL deficiency on brain lipid metabolism in vivo using an established knock-out mouse model (ATGL-ko). A moderate decrease in TAG hydrolase activity detected in ATGL-ko versus wild-type brain tissue was accompanied by a 14-fold increase in TAG levels and an altered composition of TAG-associated fatty acids in ATGL-ko brains. Oil Red O staining revealed a severe accumulation of neutral lipids associated to cerebrovascular cells and in distinct brain regions namely the ependymal cell layer and the choroid plexus along the ventricular system. In situ hybridization histochemistry identified ATGL mRNA expression in ependymal cells, the choroid plexus, pyramidal cells of the hippocampus, and the dentate gyrus. Our findings imply that ATGL is involved in brain fatty acid metabolism, particularly in regions mediating transport and exchange processes: the brain-CSF interface, the blood-CSF barrier, and the blood-brain barrier.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2011.07498.xDOI Listing
December 2011

Processing of endogenous AβPP in blood-brain barrier endothelial cells is modulated by liver-X receptor agonists and altered cellular cholesterol homeostasis.

J Alzheimers Dis 2011 ;27(2):341-60

Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria.

Impaired clearance of cerebral amyloid-β (Aβ) across the blood-brain barrier (BBB) may facilitate the onset and progression of Alzheimer's disease (AD). Additionally, experimental evidence suggests a central role for cellular cholesterol in amyloid-β protein precursor (AβPP) processing. The present study investigated whether brain capillary endothelial cells (BCEC; the anatomical basis of the BBB) are capable of endogenous AβPP synthesis and whether and to what extent AβPP synthesis and processing is under control of cellular cholesterol homeostasis. Intracellular cholesterol metabolism was pharmacologically manipulated by using natural and synthetic liver-X receptor (LXR) agonists. Using an in vitro model of the BBB consisting of primary porcine BCEC (pBCEC), we demonstrate that endogenous full-length AβPP synthesis by pBCEC is significantly increased while the amount of cell-associated, amyloidogenic Aβ oligomers is decreased in response to 24(S)-hydroxycholesterol (24OH-C) or 27OH-C, TO901317, cholesterol, or simvastatin treatment. Oxysterols, as well as simvastatin, enhanced the secretion of non-amyloidogenic sAβPPα up to 2.5-fold. In parallel, LXR agonists reduced cholesterol biosynthesis by 30-80% while stimulating esterification (up to 2.5-fold) and efflux (up to 2.5-fold) of cellular cholesterol by modifying hydroxymethylglutaryl-CoA reductase (HMGCR), sterol regulatory element-binding protein (SREBP-2), acyl-CoA: cholesterol acyltransferase 2 (ACAT-2), and ATP binding cassette transporter A1 (ABCA1) expression levels. In a polarized in vitro model mimicking the BBB, pBCEC secreted sAβPPα preferentially to the basolateral compartment. In summary endothelial cells of the BBB actively synthesize AβPP, Aβ oligomers, and secrete AβPPα in a polarized manner. AβPP processing by pBCEC is regulated by LXR agonists, which have been proven beneficial in experimental AD models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-2011-110854DOI Listing
August 2012
-->