Publications by authors named "Monica Govi"

8 Publications

  • Page 1 of 1

Large genotype-phenotype study in carriers of D4Z4 borderline alleles provides guidance for facioscapulohumeral muscular dystrophy diagnosis.

Sci Rep 2020 12 10;10(1):21648. Epub 2020 Dec 10.

Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Facioscapulohumeral muscular dystrophy (FSHD) is a myopathy with prevalence of 1 in 20,000. Almost all patients affected by FSHD carry deletions of an integral number of tandem 3.3 kilobase repeats, termed D4Z4, located on chromosome 4q35. Assessment of size of D4Z4 alleles is commonly used for FSHD diagnosis. However, the extended molecular testing has expanded the spectrum of clinical phenotypes. In particular, D4Z4 alleles with 9-10 repeat have been found in healthy individuals, in subjects with FSHD or affected by other myopathies. These findings weakened the strict relationship between observed phenotypes and their underlying genotypes, complicating the interpretation of molecular findings for diagnosis and genetic counseling. In light of the wide clinical variability detected in carriers of D4Z4 alleles with 9-10 repeats, we applied a standardized methodology, the Comprehensive Clinical Evaluation Form (CCEF), to describe and characterize the phenotype of 244 individuals carrying D4Z4 alleles with 9-10 repeats (134 index cases and 110 relatives). The study shows that 54.5% of index cases display a classical FSHD phenotype with typical facial and scapular muscle weakness, whereas 20.1% present incomplete phenotype with facial weakness or scapular girdle weakness, 6.7% display minor signs such as winged scapula or hyperCKemia, without functional motor impairment, and 18.7% of index cases show more complex phenotypes with atypical clinical features. Family studies revealed that 70.9% of relatives carrying 9-10 D4Z4 reduced alleles has no motor impairment, whereas a few relatives (10.0%) display a classical FSHD phenotype. Importantly all relatives of index cases with no FSHD phenotype were healthy carriers. These data establish the low penetrance of D4Z4 alleles with 9-10 repeats. We recommend the use of CCEF for the standardized clinical assessment integrated by family studies and further molecular investigation for appropriate diagnosis and genetic counseling. Especially in presence of atypical phenotypes and/or sporadic cases with all healthy relatives is not possible to perform conclusive diagnosis of FSHD, but all these cases need further studies for a proper diagnosis, to search novel causative genetic defects or investigate environmental factors or co-morbidities that may trigger the pathogenic process. These evidences are also fundamental for the stratification of patients eligible for clinical trials. Our work reinforces the value of large genotype-phenotype studies to define criteria for clinical practice and genetic counseling in rare diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-78578-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730397PMC
December 2020

A 5-year clinical follow-up study from the Italian National Registry for FSHD.

J Neurol 2021 Jan 19;268(1):356-366. Epub 2020 Aug 19.

Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.

Background: The natural history of facioscapulohumeral muscular dystrophy (FSHD) is undefined.

Methods: An observational cohort study was conducted in 246 FSHD1 patients. We split the analysis between index cases and carrier relatives and we classified all patients using the Comprehensive Clinical Evaluation Form (CCEF). The disease progression was measured as a variation of the FSHD score performed at baseline and at the end of 5-year follow-up (ΔFSHD score).

Findings: Disease worsened in 79.4% (112/141) of index cases versus 38.1% (40/105) of carrier relatives and advanced more rapidly in index cases (ΔFSHD score 2.3 versus 1.2). The 79.1% (38/48) of asymptomatic carriers remained asymptomatic. The highest ΔFSHD score (1.7) was found in subject with facial and scapular weakness at baseline (category A), whereas in subjects with incomplete phenotype (facial or scapular weakness, category B) had lower ΔFSHD score (0.6) p < 0.0001.

Conclusions: The progression of disease is different between index cases and carrier relatives and the assessment of the CCEF categories has strong prognostic effect in FSHD1 patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-020-10144-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815626PMC
January 2021

Phenotypic Variability Among Patients With D4Z4 Reduced Allele Facioscapulohumeral Muscular Dystrophy.

JAMA Netw Open 2020 05 1;3(5):e204040. Epub 2020 May 1.

Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Importance: Facioscapulohumeral muscular dystrophy (FSHD) is considered an autosomal dominant disorder, associated with the deletion of tandemly arrayed D4Z4 repetitive elements. The extensive use of molecular analysis of the D4Z4 locus for FSHD diagnosis has revealed wide clinical variability, suggesting that subgroups of patients exist among carriers of the D4Z4 reduced allele (DRA).

Objective: To investigate the clinical expression of FSHD in the genetic subgroup of carriers of a DRA with 7 to 8 repeat units (RUs).

Design, Setting, And Participants: This multicenter cross-sectional study included 422 carriers of DRA with 7 to 8 RUs (187 unrelated probands and 235 relatives) from a consecutive sample of 280 probands and 306 relatives from the Italian National Registry for FSHD collected between 2008 and 2016. Participants were evaluated by the Italian Clinical Network for FSHD, and all clinical and molecular data were collected in the Italian National Registry for FSHD database. Data analysis was conducted from January 2017 to June 2018.

Main Outcomes And Measures: The phenotypic classification of probands and relatives was obtained by applying the Comprehensive Clinical Evaluation Form which classifies patients in the 4 following categories: (1) participants presenting facial and scapular girdle muscle weakness typical of FSHD (category A, subcategories A1-A3), (2) participants with muscle weakness limited to scapular girdle or facial muscles (category B, subcategories B1 and B2), (3) asymptomatic or healthy participants (category C, subcategories C1 and C2), and (4) participants with myopathic phenotypes presenting clinical features not consistent with FSHD canonical phenotype (category D, subcategories D1 and D2).

Results: A total of 187 probands (mean [SD] age at last neurological examination, 53.5 [15.2] years; 103 [55.1%] men) and 235 relatives (mean [SD] age at last neurologic examination, 45.1 [17.0] years; 104 [44.7%] men) with a DRA with 7 to 8 RUs and a molecular diagnosis of FSHD were evaluated. Of 187 probands, 99 (52.9%; 95% CI, 45.7%-60.1%) displayed the classic FSHD phenotype, whereas 86 (47.1%; 95% CI, 39.8%-54.3%) presented incomplete or atypical phenotypes. Of 235 carrier relatives from 106 unrelated families, 124 (52.8%; 95% CI, 46.4%-59.7%) had no motor impairment, whereas a small number (38 [16.2%; 95% CI, 9.8%-23.1%]) displayed the classic FSHD phenotype, and 73 (31.0%; 95% CI, 24.7%-38.0%) presented with incomplete or atypical phenotypes. In 37 of 106 families (34.9%; 95% CI, 25.9%-44.8%), the proband was the only participant presenting with a myopathic phenotype, while only 20 families (18.9%; 95% CI, 11.9%-27.6%) had a member with autosomal dominant FSHD.

Conclusions And Relevance: This study found large phenotypic variability associated with individuals carrying a DRA with 7 to 8 RUs, in contrast to the indication that a positive molecular test is the only determining aspect for FSHD diagnosis. These findings suggest that carriers of a DRA with 7 to 8 RUs constitute a genetic subgroup different from classic FSHD. Based on these results, it is recommended that clinicians use the Comprehensive Clinical Evaluation Form for clinical classification and, whenever possible, study the extended family to provide the most adequate clinical management and genetic counseling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2020.4040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195625PMC
May 2020

Interpretation of the Epigenetic Signature of Facioscapulohumeral Muscular Dystrophy in Light of Genotype-Phenotype Studies.

Int J Mol Sci 2020 Apr 10;21(7). Epub 2020 Apr 10.

Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by incomplete penetrance and intra-familial clinical variability. The disease has been associated with the genetic and epigenetic features of the D4Z4 repetitive elements at 4q35. Recently, D4Z4 hypomethylation has been proposed as a reliable marker in the FSHD diagnosis. We exploited the Italian Registry for FSHD, in which FSHD families are classified using the Clinical Comprehensive Evaluation Form (CCEF). A total of 122 index cases showing a classical FSHD phenotype (CCEF, category A) and 110 relatives were selected to test with the receiver operating characteristic (ROC) curve, the diagnostic and predictive value of D4Z4 methylation. Moreover, we performed DNA methylation analysis in selected large families with reduced penetrance characterized by the co-presence of subjects carriers of one D4Z4 reduced allele with no signs of disease or presenting the classic FSHD clinical phenotype. We observed a wide variability in the D4Z4 methylation levels among index cases revealing no association with clinical manifestation or disease severity. By extending the analysis to family members, we revealed the low predictive value of D4Z4 methylation in detecting the affected condition. In view of the variability in D4Z4 methylation profiles observed in our large cohort, we conclude that D4Z4 methylation does not mirror the clinical expression of FSHD. We recommend that measurement of this epigenetic mark must be interpreted with caution in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21072635DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178248PMC
April 2020

A novel clinical tool to classify facioscapulohumeral muscular dystrophy phenotypes.

J Neurol 2016 Jun 28;263(6):1204-14. Epub 2016 Apr 28.

Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Based on the 7-year experience of the Italian Clinical Network for FSHD, we revised the FSHD clinical form to describe, in a harmonized manner, the phenotypic spectrum observed in FSHD. The new Comprehensive Clinical Evaluation Form (CCEF) defines various clinical categories by the combination of different features. The inter-rater reproducibility of the CCEF was assessed between two examiners using kappa statistics by evaluating 56 subjects carrying the molecular marker used for FSHD diagnosis. The CCEF classifies: (1) subjects presenting facial and scapular girdle muscle weakness typical of FSHD (category A, subcategories A1-A3), (2) subjects with muscle weakness limited to scapular girdle or facial muscles (category B subcategories B1, B2), (3) asymptomatic/healthy subjects (category C, subcategories C1, C2), (4) subjects with myopathic phenotype presenting clinical features not consistent with FSHD canonical phenotype (D, subcategories D1, D2). The inter-rater reliability study showed an excellent concordance of the final four CCEF categories with a κ equal to 0.90; 95 % CI (0.71; 0.97). Absolute agreement was observed for categories C and D, an excellent agreement for categories A [κ = 0.88; 95 % CI (0.75; 1.00)], and a good agreement for categories B [κ = 0.79; 95 % CI (0.57; 1.00)]. The CCEF supports the harmonized phenotypic classification of patients and families. The categories outlined by the CCEF may assist diagnosis, genetic counseling and natural history studies. Furthermore, the CCEF categories could support selection of patients in randomized clinical trials. This precise categorization might also promote the search of genetic factor(s) contributing to the phenotypic spectrum of disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-016-8123-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893383PMC
June 2016

Clinical expression of facioscapulohumeral muscular dystrophy in carriers of 1-3 D4Z4 reduced alleles: experience of the FSHD Italian National Registry.

BMJ Open 2016 Jan 5;6(1):e007798. Epub 2016 Jan 5.

Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, Modena, Italy Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Objectives: Facioscapulohumeral muscular dystrophy type 1 (FSHD1) has been genetically linked to reduced numbers (≤ 8) of D4Z4 repeats at 4q35. Particularly severe FSHD cases, characterised by an infantile onset and presence of additional extra-muscular features, have been associated with the shortest D4Z4 reduced alleles with 1-3 repeats (1-3 DRA). We searched for signs of perinatal onset and evaluated disease outcome through the systematic collection of clinical and anamnestic records of de novo and familial index cases and their relatives, carrying 1-3 DRA.

Setting: Italy.

Participants: 66 index cases and 33 relatives carrying 1-3 DRA.

Outcomes: The clinical examination was performed using the standardised FSHD evaluation form with validated inter-rater reliability. To investigate the earliest signs of disease, we designed the Infantile Anamnestic Questionnaire (IAQ). Comparison of age at onset was performed using the non-parametric Wilcoxon rank-sum or Kruskal-Wallis test. Comparison of the FSHD score was performed using a general linear model and Wald test. Kaplan-Meier survival analysis was used to estimate the age-specific cumulative motor impairment risk.

Results: No patients had perinatal onset. Among index cases, 36 (54.5%) showed the first signs by 10 years of age. The large majority of patients with early disease onset (26 out of 36, 72.2%) were de novo; whereas the majority of patients with disease onset after 10 years of age were familial (16, 53.3%). Comparison of the disease severity outcome between index cases with age at onset before and over 10 years of age, failed to detect statistical significance (Wald test p value=0.064). Of 61 index cases, only 17 (27.9%) presented extra-muscular conditions. Relatives carrying 1-3 DRA showed a large clinical variability ranging from healthy subjects, to patients with severe motor impairment.

Conclusions: The size of the D4Z4 allele is not always predictive of severe clinical outcome. The high degree of clinical variability suggests that additional factors contribute to the phenotype complexity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjopen-2015-007798DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716236PMC
January 2016

Large scale genotype-phenotype analyses indicate that novel prognostic tools are required for families with facioscapulohumeral muscular dystrophy.

Brain 2013 Nov 11;136(Pt 11):3408-17. Epub 2013 Sep 11.

1 Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, via Roma 67, 56126 Pisa, Italy.

Facioscapulohumeral muscular dystrophy has been genetically linked to reduced numbers (≤ 8) of D4Z4 repeats at 4q35 combined with 4A(159/161/168) DUX4 polyadenylation signal haplotype. However, we have recently reported that 1.3% of healthy individuals carry this molecular signature and 19% of subjects affected by facioscapulohumeral muscular dystrophy do not carry alleles with eight or fewer D4Z4 repeats. Therefore, prognosis for subjects carrying or at risk of carrying D4Z4 reduced alleles has become more complicated. To test for additional prognostic factors, we measured the degree of motor impairment in a large group of patients affected by facioscapulohumeral muscular dystrophy and their relatives who are carrying D4Z4 reduced alleles. The clinical expression of motor impairment was assessed in 530 subjects, 163 probands and 367 relatives, from 176 unrelated families according to a standardized clinical score. The associations between clinical severity and size of D4Z4 allele, degree of kinship, gender, age and 4q haplotype were evaluated. Overall, 32.2% of relatives did not display any muscle functional impairment. This phenotype was influenced by the degree of relation with proband, because 47.1% of second- through fifth-degree relatives were unaffected, whereas only 27.5% of first-degree family members did not show motor impairment. The estimated risk of developing motor impairment by age 50 for relatives carrying a D4Z4 reduced allele with 1-3 repeats or 4-8 repeats was 88.7% and 55%, respectively. Male relatives had a mean score significantly higher than females (5.4 versus 4.0, P = 0.003). No 4q haplotype was exclusively associated with the presence of disease. In 13% of families in which D4Z4 alleles with 4-8 repeats segregate, the diagnosis of facioscapulohumeral muscular dystrophy was reported only in one generation. In conclusion, this large-scale analysis provides further information that should be taken into account when counselling families in which a reduced allele with 4-8 D4Z4 repeats segregates. In addition, the reduced expression of disease observed in distant relatives suggests that a family's genetic background plays a role in the occurrence of facioscapulohumeral muscular dystrophy. These results indicate that the identification of new susceptibility factors for this disease will require an accurate classification of families.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awt226DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808686PMC
November 2013

Large-scale population analysis challenges the current criteria for the molecular diagnosis of fascioscapulohumeral muscular dystrophy.

Am J Hum Genet 2012 Apr;90(4):628-35

Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Facioscapulohumeral muscular dystrophy (FSHD) is a common hereditary myopathy causally linked to reduced numbers (≤8) of 3.3 kilobase D4Z4 tandem repeats at 4q35. However, because individuals carrying D4Z4-reduced alleles and no FSHD and patients with FSHD and no short allele have been observed, additional markers have been proposed to support an FSHD molecular diagnosis. In particular a reduction in the number of D4Z4 elements combined with the 4A(159/161/168)PAS haplotype (which provides the possibility of expressing DUX4) is currently used as the genetic signature uniquely associated with FSHD. Here, we analyzed these DNA elements in more than 800 Italian and Brazilian samples of normal individuals unrelated to any FSHD patients. We find that 3% of healthy subjects carry alleles with a reduced number (4-8) of D4Z4 repeats on chromosome 4q and that one-third of these alleles, 1.3%, occur in combination with the 4A161PAS haplotype. We also systematically characterized the 4q35 haplotype in 253 unrelated FSHD patients. We find that only 127 of them (50.1%) carry alleles with 1-8 D4Z4 repeats associated with 4A161PAS, whereas the remaining FSHD probands carry different haplotypes or alleles with a greater number of D4Z4 repeats. The present study shows that the current genetic signature of FSHD is a common polymorphism and that only half of FSHD probands carry this molecular signature. Our results suggest that the genetic basis of FSHD, which is remarkably heterogeneous, should be revisited, because this has important implications for genetic counseling and prenatal diagnosis of at-risk families.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2012.02.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322229PMC
April 2012