Publications by authors named "Monalisa Navare"

3 Publications

  • Page 1 of 1

Preclinical Efficacy and Safety of a Human Embryonic Stem Cell-Derived Midbrain Dopamine Progenitor Product, MSK-DA01.

Cell Stem Cell 2021 Feb;28(2):217-229.e7

Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra leading to disabling deficits. Dopamine neuron grafts may provide a significant therapeutic advance over current therapies. We have generated midbrain dopamine neurons from human embryonic stem cells and manufactured large-scale cryopreserved dopamine progenitors for clinical use. After optimizing cell survival and phenotypes in short-term studies, the cell product, MSK-DA01, was subjected to an extensive set of biodistribution, toxicity, and tumorigenicity assessments in mice under GLP conditions. A large-scale efficacy study was also performed in rats with the same lot of cells intended for potential human use and demonstrated survival of the grafted cells and behavioral amelioration in 6-hydroxydopamine lesioned rats. There were no adverse effects attributable to the grafted cells, no obvious distribution outside the brain, and no cell overgrowth or tumor formation, thus paving the way for a future clinical trial.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2021.01.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903922PMC
February 2021

Adult Human Glioblastomas Harbor Radial Glia-like Cells.

Stem Cell Reports 2020 02 30;14(2):338-350. Epub 2020 Jan 30.

Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Radial glia (RG) cells are the first neural stem cells to appear during embryonic development. Adult human glioblastomas harbor a subpopulation of RG-like cells with typical RG morphology and markers. The cells exhibit the classic and unique mitotic behavior of normal RG in a cell-autonomous manner. Single-cell RNA sequencing analyses of glioblastoma cells reveal transcriptionally dynamic clusters of RG-like cells that share the profiles of normal human fetal radial glia and that reside in quiescent and cycling states. Functional assays show a role for interleukin in triggering exit from dormancy into active cycling, suggesting a role for inflammation in tumor progression. These data are consistent with the possibility of persistence of RG into adulthood and their involvement in tumor initiation or maintenance. They also provide a putative cellular basis for the persistence of normal developmental programs in adult tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2020.01.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014025PMC
February 2020