Publications by authors named "Mohamad Reza Bayatiani"

2 Publications

  • Page 1 of 1

Conformational changes of β-thalassemia major hemoglobin and oxidative status of plasma after in vitro exposure to extremely low-frequency electromagnetic fields: An artificial neural network analysis.

Electromagn Biol Med 2021 Jan 23;40(1):117-130. Epub 2020 Oct 23.

Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran.

Electromagnetic fields (EMF) can generate reactive oxygen species and induce oxidative modifications. We investigated the effects of extremely low-frequency electromagnetic fields (ELF-EMF) on oxidative status of plasma and erythrocytes in β-thalassemia major patients and design artificial neural networks (ANN) for evaluating the oxyHb concentration. Blood samples were obtained from age and sex-matched healthy donors (n = 12) and major β-thalassemia patients (n = 12) and subjected to 0.5 and 1 mT and 50 Hz of EMF. Plasma oxidative status was estimated after 1 and 2 h exposure to ELE-EMF. Structural changes of plasma proteins were investigated by Native PAGE and SDS-PAGE. Moreover; multilayer perceptron (MLP) method was applied for designing a feed forward ANN model to predict the impact of these oxidative and antioxidative parameters on oxyHb concentration. Two hour exposure to ELF-EMF induced significant oxidative changes on major β-thalassemia samplesElectrophoretic profiles showed two high molecular weight (HMW) protein aggregates in plasma samples from healthy donors and major β-thalassemia patients. According to our ANN design, the main predictors of oxyHb concentration were optical density of Hb at 542, 340, 569, 630, 577, and 420 nm and metHb and hemichrome (HC) concentration. Accuracy of the proposed ANN model was shown by predicted by observed chart (y = 1.3 + 0.96x, R = 0.942), sum of squares errors (SSR), and relative errors (RE). Our results showed the detailed effects of ELF-EMF on Hb structure and oxidative balance of plasma in major β-thalassemia patients and significance of ANN analysis during normal and pathologic conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2021

Protective properties of Myrtus communis extract against oxidative effects of extremely low-frequency magnetic fields on rat plasma and hemoglobin.

Int J Radiat Biol 2019 02 7;95(2):215-224. Epub 2019 Jan 7.

c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran.

Purpose: This study investigates the protective properties of Myrtus communis extract against the oxidative effects of extremely low-frequency magnetic fields (ELFMF). Also, this study is aimed to analyze the conformational changes of hemoglobin, oxidative damages to plasma proteins and antioxidant power of plasma following exposure to ELFMF.

Materials And Methods: Adult male rats were divided into 3 groups: (1) control, (2) ELFMF exposure, and (3) ELFMF exposure after M. communis extract administration. The magnetic field (0.7 mT, 50 Hz) was produced by a Helmholtz coil for one month, 2 hours a day. The M. communis extract was injected intraperitoneally at a dose of 0.5 mg/kg before exposure to ELFMF. The oxidative effects of ELFMF were studied by evaluating the hemoglobin, methemoglobin (metHb) and hemichrome levels, absorption spectrum of hemoglobin (200-700 nm), oxidative damage to plasma proteins by measuring protein carbonyl (PCO) levels and plasma antioxidant power according to the ferric reducing ability of plasma (FRAP). The mean and standard errors of the mean were determined for each group. One-way ANOVA analysis was used to compare the means of groups. The significance level was considered to be p < .05. Moreover, artificial neural network (ANN) analysis was used to identify the predictive parameters for estimating the oxyhemoglobin (oxyHb) concentration.

Results: Exposure to ELFMF decreased the FRAP which was in concomitant with a significant increase in plasma PCO, metHb and hemichrome concentrations (p < .001). Oxidative modifications of Hb were shown by reduction in optical density at 340 nm (globin-heme interaction) and 420 nm (heme-heme interaction). Administration of M. communis extract increased FRAP values and decreased plasma POC, metHb, and hemichrome concentrations. Also, a significant increase in Hb absorbance at 340, 420, 542, and 577 nm showed the protective properties of M. communis extract against ELFMF-induced oxidative stress in erythrocytes. ANN analysis showed that optical absorption of hemoglobin at 520, 577, 542, and 630 nm and concentration of metHb and hemichrome were the most important parameters in predicting the oxyHb concentration.

Conclusions: Myrtus communis extract enhances the ability of erythrocytes and plasma to deal with oxidative conditions during exposure to ELFMF. Also, ANN analysis can predict the most important parameters in relation to Hb structure during oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2019