Publications by authors named "Misa Graff"

21 Publications

  • Page 1 of 1

Analyses of biomarker traits in diverse UK biobank participants identify associations missed by European-centric analysis strategies.

J Hum Genet 2021 Aug 11. Epub 2021 Aug 11.

Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.

Despite the dramatic underrepresentation of non-European populations in human genetics studies, researchers continue to exclude participants of non-European ancestry, as well as variants rare in European populations, even when these data are available. This practice perpetuates existing research disparities and can lead to important and large effect size associations being missed. Here, we conducted genome-wide association studies (GWAS) of 31 serum and urine biomarker quantitative traits in African (n = 9354), East Asian (n = 2559), and South Asian (n = 9823) ancestry UK Biobank (UKBB) participants. We adjusted for all known GWAS catalog variants for each trait, as well as novel signals identified in a recent European ancestry-focused analysis of UKBB participants. We identify 7 novel signals in African ancestry and 2 novel signals in South Asian ancestry participants (p < 1.61E-10). Many of these signals are highly plausible, including a cis pQTL for the gene encoding gamma-glutamyl transferase and PIEZO1 and G6PD variants with impacts on HbA1c through likely erythrocytic mechanisms. This work illustrates the importance of using the genetic data we already have in diverse populations, with novel discoveries possible in even modest sample sizes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s10038-021-00968-0DOI Listing
August 2021

Genome-wide association study of body fat distribution traits in Hispanics/Latinos from the HCHS/SOL.

Hum Mol Genet 2021 Jun 24. Epub 2021 Jun 24.

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA.

Central obesity is a leading health concern with a great burden carried by ethnic minority populations, especially Hispanics/Latinos. Genetic factors contribute to the obesity burden overall and to inter-population differences. We aimed to identify loci associated with central adiposity measured as waist-to-hip ratio (WHR), waist circumference (WC), and hip circumference (HIP) adjusted for body mass index (adjBMI), using the Hispanic Community Health Study/Study of Latinos (HCHS/SOL); determine if differences in associations differ by background group within HCHS/SOL; and determine whether previously reported associations generalize to HCHS/SOL. Our analyses included 7472 women and 5200 men of mainland (Mexican, Central and South American) and Caribbean (Puerto Rican, Cuban, and Dominican) background residing in the US. We performed genome-wide association analyses stratified and combined across sexes using linear mixed-model regression. We identified 16 variants for WHRadjBMI, 22 for WCadjBMI, and 28 for HIPadjBMI that reached suggestive significance (P < 1x10-6). Many loci exhibited differences in strength of associations by ethnic background and sex. We brought a total of 66 variants forward for validation in cohorts (N = 34 161) with participants of Hispanic/Latino, African and European descent. We confirmed 4 novel loci (P < 0.05 and consistent direction of effect, and P < 5x10-8 after meta-analysis), including 2 for WHRadjBMI (rs13301996, rs79478137); 1 for WCadjBMI (rs3168072); and 1 for HIPadjBMI (rs28692724). Also, we generalized previously reported associations to HCHS/SOL, (8 for WHRadjBMI; 10 for WCadjBMI; 12 for HIPadjBMI). Our study highlights the importance of large-scale genomic studies in ancestrally diverse Hispanic/Latino populations for identifying and characterizing central obesity-susceptibility that may be ancestry-specific.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab166DOI Listing
June 2021

Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women.

Nat Commun 2021 01 28;12(1):654. Epub 2021 Jan 28.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10), arthritis (GDF5 p = 4 × 10), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-20918-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844411PMC
January 2021

Host genetic effects in pneumonia.

Am J Hum Genet 2021 01 13;108(1):194-201. Epub 2020 Dec 13.

Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Electronic address:

Given the coronavirus disease 2019 (COVID-19) pandemic, investigations into host susceptibility to infectious diseases and downstream sequelae have never been more relevant. Pneumonia is a lung disease that can cause respiratory failure and hypoxia and is a common complication of infectious diseases, including COVID-19. Few genome-wide association studies (GWASs) of host susceptibility and severity of pneumonia have been conducted. We performed GWASs of pneumonia susceptibility and severity in the Vanderbilt University biobank (BioVU) with linked electronic health records (EHRs), including Illumina Expanded Multi-Ethnic Global Array (MEGA)-genotyped European ancestry (EA, n= 69,819) and African ancestry (AA, n = 15,603) individuals. Two regions of large effect were identified: the CFTR locus in EA (rs113827944; OR = 1.84, p value = 1.2 × 10) and HBB in AA (rs334 [p.Glu7Val]; OR = 1.63, p value = 3.5 × 10). Mutations in these genes cause cystic fibrosis (CF) and sickle cell disease (SCD), respectively. After removing individuals diagnosed with CF and SCD, we assessed heterozygosity effects at our lead variants. Further GWASs after removing individuals with CF uncovered an additional association in R3HCC1L (rs10786398; OR = 1.22, p value = 3.5 × 10), which was replicated in two independent datasets: UK Biobank (n = 459,741) and 7,985 non-overlapping BioVU subjects, who are genotyped on arrays other than MEGA. This variant was also validated in GWASs of COVID-19 hospitalization and lung function. Our results highlight the importance of the host genome in infectious disease susceptibility and severity and offer crucial insight into genetic effects that could potentially influence severity of COVID-19 sequelae.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.12.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820802PMC
January 2021

Multi-Ethnic Genome-Wide Association Study of Decomposed Cardioelectric Phenotypes Illustrates Strategies to Identify and Characterize Evidence of Shared Genetic Effects for Complex Traits.

Circ Genom Precis Med 2020 08 30;13(4):e002680. Epub 2020 Jun 30.

Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill.

Background: We examined how expanding electrocardiographic trait genome-wide association studies to include ancestrally diverse populations, prioritize more precise phenotypic measures, and evaluate evidence for shared genetic effects enabled the detection and characterization of loci.

Methods: We decomposed 10 seconds, 12-lead electrocardiograms from 34 668 multi-ethnic participants (15% Black; 30% Hispanic/Latino) into 6 contiguous, physiologically distinct (P wave, PR segment, QRS interval, ST segment, T wave, and TP segment) and 2 composite, conventional (PR interval and QT interval) interval scale traits and conducted multivariable-adjusted, trait-specific univariate genome-wide association studies using 1000-G imputed single-nucleotide polymorphisms. Evidence of shared genetic effects was evaluated by aggregating meta-analyzed univariate results across the 6 continuous electrocardiographic traits using the combined phenotype adaptive sum of powered scores test.

Results: We identified 6 novels (, and ) and 87 known loci (adaptive sum of powered score test <5×10). Lead single-nucleotide polymorphism rs3211938 at was common in Blacks (minor allele frequency=10%), near monomorphic in European Americans, and had effects on the QT interval and TP segment that ranked among the largest reported to date for common variants. The other 5 novel loci were observed when evaluating the contiguous but not the composite electrocardiographic traits. Combined phenotype testing did not identify novel electrocardiographic loci unapparent using traditional univariate approaches, although this approach did assist with the characterization of known loci.

Conclusions: Despite including one-third as many participants as published electrocardiographic trait genome-wide association studies, our study identified 6 novel loci, emphasizing the importance of ancestral diversity and phenotype resolution in this era of ever-growing genome-wide association studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002680DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520945PMC
August 2020

Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort.

BMJ Open 2020 06 3;10(6):e033695. Epub 2020 Jun 3.

Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Objectives: Infant anthropometric growth varies across socioeconomic factors, including maternal education and income, and may serve as an indicator of environmental influences in early life with long-term health consequences. Previous research has identified sociodemographic gradients in growth with a focus on the first year and beyond, but estimates are sparse for growth before 6 months. Thus, our objective was to examine the relationship between sociodemographic factors and infant growth patterns between birth and 5 months of age.

Design: Prospective cohort study.

Settings: Low-income to middle-income neighbourhoods in Santiago, Chile (1991-1996).

Participants: 1412 participants from a randomised iron-deficiency anaemia preventive trial in healthy infants.

Main Outcome Measures: Longitudinal anthropometrics including monthly weight (kg), length (cm) and weight-for-length (WFL) values. For each measure, we estimated three individual-level growth parameters (size, timing and velocity) from SuperImposition by Translation and Rotation models. Size and timing changes represent vertical and horizontal growth curve shifts, respectively, and velocity change represents growth rate shifts. We estimated the linear association between growth parameters and gestational age, maternal age, education and socioeconomic position (SEP).

Results: Lower SEP was associated with a slower linear (length) velocity growth parameter (-0.22, 95% CI -0.31 to -0.13)-outcome units are per cent change in velocity from the average growth curve. Lower SEP was associated with later WFL growth timing as demonstrated through the tempo growth parameter for females (0.25, 95% CI 0.05 to 0.42)-outcome units are shifts in days from the average growth curve. We found no evidence of associations between SEP and the weight size, timing or velocity growth rate parameters.

Conclusion: Previous research on growth in older infants and children shows associations between lower SEP with slower length velocity. We found evidence supporting this association in the first 5 months of life, which may inform age-specific prevention efforts aimed at infant length growth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmjopen-2019-033695DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282289PMC
June 2020

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations.

PLoS Genet 2019 12 23;15(12):e1008500. Epub 2019 Dec 23.

Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America.

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008500DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953885PMC
December 2019

GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.

Nat Commun 2018 12 3;9(1):5141. Epub 2018 Dec 3.

Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA.

Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07340-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277418PMC
December 2018

Direct and indirect genetic effects on triglycerides through omics and correlated phenotypes.

BMC Proc 2018 17;12(Suppl 9):22. Epub 2018 Sep 17.

1Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA.

Even though there has been great success in identifying lipid-associated single-nucleotide polymorphisms (SNPs), the mechanisms through which the SNPs act on each trait are poorly understood. The emergence of large, complex biological data sets in well-characterized cohort studies offers an opportunity to investigate the genetic effects on trait variability as a way of informing the causal genes and biochemical pathways that are involved in lipoprotein metabolism. However, methods for simultaneously analyzing multiple omics, environmental exposures, and longitudinally measured, correlated phenotypes are lacking. The purpose of our study was to demonstrate the utility of the structural equation modeling (SEM) approach to inform our understanding of the pathways by which genetic variants lead to disease risk. With the SEM method, we examine multiple pathways directly and indirectly through previously identified triglyceride (TG)-associated SNPs, methylation, and high-density lipoprotein (HDL), including sex, age, and smoking behavior, while adding in biologically plausible direct and indirect pathways. We observed significant SNP effects ( < 0.05 and directionally consistent) on TGs at visit 4 (TG4) for five loci, including rs645040 (), rs964184 (/), rs4765127 (), rs1121980 (), and rs10401969 (). Across these loci, we identify three with strong evidence of an indirect genetic effect on TG4 through HDL, one with evidence of pleiotropic effect on HDL and TG4, and one variant that acts on TG4 indirectly through a nearby methylation site. Such information can be used to prioritize candidate genes in regions of interest, inform mechanisms of action of methylation effects, and highlight possible genes with pleiotropic effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12919-018-0118-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157130PMC
September 2018

Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium.

Mol Psychiatry 2019 12 9;24(12):1920-1932. Epub 2018 Jul 9.

Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0079-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326896PMC
December 2019

Discovery, fine-mapping, and conditional analyses of genetic variants associated with C-reactive protein in multiethnic populations using the Metabochip in the Population Architecture using Genomics and Epidemiology (PAGE) study.

Hum Mol Genet 2018 08;27(16):2940-2953

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.

C-reactive protein (CRP) is a circulating biomarker indicative of systemic inflammation. We aimed to evaluate genetic associations with CRP levels among non-European-ancestry populations through discovery, fine-mapping and conditional analyses. A total of 30 503 non-European-ancestry participants from 6 studies participating in the Population Architecture using Genomics and Epidemiology study had serum high-sensitivity CRP measurements and ∼200 000 single nucleotide polymorphisms (SNPs) genotyped on the Metabochip. We evaluated the association between each SNP and log-transformed CRP levels using multivariate linear regression, with additive genetic models adjusted for age, sex, the first four principal components of genetic ancestry, and study-specific factors. Differential linkage disequilibrium patterns between race/ethnicity groups were used to fine-map regions associated with CRP levels. Conditional analyses evaluated for multiple independent signals within genetic regions. One hundred and sixty-three unique variants in 12 loci in overall or race/ethnicity-stratified Metabochip-wide scans reached a Bonferroni-corrected P-value <2.5E-7. Three loci have no (HACL1, OLFML2B) or only limited (PLA2G6) previous associations with CRP levels. Six loci had different top hits in race/ethnicity-specific versus overall analyses. Fine-mapping refined the signal in six loci, particularly in HNF1A. Conditional analyses provided evidence for secondary signals in LEPR, IL1RN and HNF1A, and for multiple independent signals in CRP and APOE. We identified novel variants and loci associated with CRP levels, generalized known CRP associations to a multiethnic study population, refined association signals at several loci and found evidence for multiple independent signals at several well-known loci. This study demonstrates the benefit of conducting inclusive genetic association studies in large multiethnic populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy211DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6077792PMC
August 2018

A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.

Am J Hum Genet 2018 03 15;102(3):375-400. Epub 2018 Feb 15.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA.

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.01.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985266PMC
March 2018

Milk Intake at Midlife and Cognitive Decline over 20 Years. The Atherosclerosis Risk in Communities (ARIC) Study.

Nutrients 2017 Oct 17;9(10). Epub 2017 Oct 17.

Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514, USA.

: Faster rates of cognitive decline are likely to result in earlier onset of cognitive impairment and dementia. d-galactose, a derivative of lactose, is used in animal studies to induce neurodegeneration. Milk is the primary source of lactose in the human diet, and its effects on cognitive decline have not been fully evaluated. : Assess the association of milk intake with change in cognitive function over 20 years. : A total of 13,751 participants of the Atherosclerosis Risk in Communities (ARIC) cohort completed a food frequency questionnaire and three neurocognitive evaluations from 1990 through 2013. Two single nucleotide polymorphisms (SNPs) were used to determine lactase persistence (LCT-13910 C/T for Whites and LCT-14010 G/C for Blacks). Mixed-effects models were used to study the association of milk intake with cognitive change. Multiple imputations by chained equations were used to account for attrition. : Milk intake greater than 1 glass/day was associated with greater decline in the global z-score over a 20-year period. The difference in decline was 0.10 (95% CI: 0.16, 0.03) z-scores, or an additional 10% decline, relative to the group reporting "almost never" consuming milk. : Replication of these results is warranted in diverse populations with greater milk intake and higher variability of lactase persistence genotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu9101134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691750PMC
October 2017

Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system.

Elife 2017 09 12;6. Epub 2017 Sep 12.

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.

Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic Bio biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, , with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.25060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595434PMC
September 2017

Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.

Nat Commun 2017 04 26;8:14977. Epub 2017 Apr 26.

Centre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Australia.

Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414044PMC
April 2017

Genome-wide association of trajectories of systolic blood pressure change.

BMC Proc 2016 18;10(Suppl 7):321-327. Epub 2016 Oct 18.

Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514 USA.

Background: There is great interindividual variation in systolic blood pressure (SBP) as a result of the influences of several factors, including sex, ancestry, smoking status, medication use, and, especially, age. The majority of genetic studies have examined SBP measured cross-sectionally; however, SBP changes over time, and not necessarily in a linear fashion. Therefore, this study conducted a genome-wide association (GWA) study of SBP change trajectories using data available through the Genetic Analysis Workshop 19 (GAW19) of 959 individuals from 20 extended Mexican American families from the San Antonio Family Studies with up to 4 measures of SBP. We performed structural equation modeling (SEM) while taking into account potential genetic effects to identify how, if at all, to include covariates in estimating the SBP change trajectories using a mixture model based latent class growth modeling (LCGM) approach for use in the GWA analyses.

Results: The semiparametric LCGM approach identified 5 trajectory classes that captured SBP changes across age. Each LCGM identified trajectory group was ranked based on the average number of cumulative years as hypertensive. Using a pairwise comparison of these classes the heritability estimates range from 12 to 94 % (SE = 17 to 40 %).

Conclusion: These identified trajectories are significantly heritable, and we identified a total of 8 promising loci that influence one's trajectory in SBP change across age. Our results demonstrate the potential utility of capitalizing on extant genetic data and longitudinal SBP assessments available through GAW19 to explore novel analytical methods with promising results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12919-016-0050-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133524PMC
October 2016

Interaction of smoking and obesity susceptibility loci on adolescent BMI: The National Longitudinal Study of Adolescent to Adult Health.

BMC Genet 2015 Nov 4;16:131. Epub 2015 Nov 4.

Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.

Background: Adolescence is a sensitive period for weight gain and risky health behaviors, such as smoking. Genome-wide association studies (GWAS) have identified loci contributing to adult body mass index (BMI). Evidence suggests that many of these loci have a larger influence on adolescent BMI. However, few studies have examined interactions between smoking and obesity susceptibility loci on BMI. This study investigates the interaction of current smoking and established BMI SNPs on adolescent BMI. Using data from the National Longitudinal Study of Adolescent to Adult Health, a nationally-representative, prospective cohort of the US school-based population in grades 7 to 12 (12-20 years of age) in 1994-95 who have been followed into adulthood (Wave II 1996; ages 12-21, Wave III; ages 18-27), we assessed (in 2014) interactions of 40 BMI-related SNPs and smoking status with percent of the CDC/NCHS 2000 median BMI (%MBMI) in European Americans (n = 5075), African Americans (n = 1744) and Hispanic Americans (n = 1294).

Results: Two SNPs showed nominal significance for interaction (p < 0.05) between smoking and genotype with %MBMI in European Americans (EA) (rs2112347 (POC5): β = 1.98 (0.06, 3.90), p = 0.04 and near rs571312 (MC4R): β 2.15 (-0.03, 4.33) p = 0.05); and one SNP showed a significant interaction effect after stringent correction for multiple testing in Hispanic Americans (HA) (rs1514175 (TNNI3K): β 8.46 (4.32, 12.60), p = 5.9E-05). Stratifying by sex, these interactions suggest a stronger effect in female smokers.

Conclusions: Our study highlights potentially important sex differences in obesity risk by smoking status in adolescents, with those who may be most likely to initiate smoking (i.e., adolescent females), being at greatest risk for exacerbating genetic obesity susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12863-015-0289-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634717PMC
November 2015

Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians.

Am J Clin Nutr 2015 Nov 9;102(5):1266-78. Epub 2015 Sep 9.

Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland;

Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown.

Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus.

Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations.

Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-ln-pmol/L (95% CI: 0.035, 0.063-ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance.

Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms. Six of the participating studies are registered at clinicaltrials.gov as NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics of Lipid Lowering Drugs and Diet Network), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3945/ajcn.114.101238DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625584PMC
November 2015

Directional dominance on stature and cognition in diverse human populations.

Nature 2015 Jul 1;523(7561):459-462. Epub 2015 Jul 1.

Department of Nutrition and Dietetics, Harokopio University of Athens, 70, El. Venizelou Ave, Athens, 17671, Greece.

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14618DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516141PMC
July 2015

Fine Mapping and Identification of BMI Loci in African Americans.

Am J Hum Genet 2013 Oct;93(4):661-71

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Electronic address:

Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10(-5). Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r(2) > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10(-8)) and DHX34 (rs4802349, p = 1.2 × 10(-7)), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2013.08.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791273PMC
October 2013

Effects of smoking on the genetic risk of obesity: the population architecture using genomics and epidemiology study.

BMC Med Genet 2013 Jan 11;14. Epub 2013 Jan 11.

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.

Background: Although smoking behavior is known to affect body mass index (BMI), the potential for smoking to influence genetic associations with BMI is largely unexplored.

Methods: As part of the 'Population Architecture using Genomics and Epidemiology (PAGE)' Consortium, we investigated interaction between genetic risk factors associated with BMI and smoking for 10 single nucleotide polymorphisms (SNPs) previously identified in genome-wide association studies. We included 6 studies with a total of 56,466 subjects (16,750 African Americans (AA) and 39,716 European Americans (EA)). We assessed effect modification by testing an interaction term for each SNP and smoking (current vs. former/never) in the linear regression and by stratified analyses.

Results: We did not observe strong evidence for interactions and only observed two interactions with p-values <0.1: for rs6548238/TMEM18, the risk allele (C) was associated with BMI only among AA females who were former/never smokers (β = 0.018, p = 0.002), vs. current smokers (β = 0.001, p = 0.95, p(interaction) = 0.10). For rs9939609/FTO, the A allele was more strongly associated with BMI among current smoker EA females (β = 0.017, p = 3.5 x 10(-5)), vs. former/never smokers (β = 0.006, p = 0.05, p(interaction) = 0.08).

Conclusions: These analyses provide limited evidence that smoking status may modify genetic effects of previously identified genetic risk factors for BMI. Larger studies are needed to follow up our results.

Clinical Trial Registration: NCT00000611.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2350-14-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564691PMC
January 2013
-->