Publications by authors named "Miroslav Machala"

100 Publications

A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype.

Chemosphere 2021 Jan 10;263:128126. Epub 2020 Sep 10.

Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic. Electronic address:

Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128126DOI Listing
January 2021

The role of metabolism in toxicity of polycyclic aromatic hydrocarbons and their non-genotoxic modes of action.

Curr Drug Metab 2020 Nov 25. Epub 2020 Nov 25.

Veterinary Research Institute, Brno,. Czech Republic.

Polycyclic aromatic hydrocarbons (PAHs) represent a class of widely distributed environmental pollutants that have been primarily studied as genotoxic compounds. Their mutagenicity/genotoxicity largely depends on their oxidative metabolism leading to production of dihydrodiol epoxide metabolites, as well as additional metabolites contributing to oxidative DNA damage, such as PAH quinones. However, both parental PAHs and their metabolites, including PAH quinones or hydroxylated PAHs, have been shown to produce various types of non-genotoxic effects. These include e.g. activation of the aryl hydrocarbon receptor and/or additional nuclear receptors, activation of membrane receptors, including tyrosine kinases and G-protein coupled receptors, or activation of intracellular signaling pathways, including mitogen-activated protein kinases, Akt kinase and Ca2+-dependent signaling. These pathways may, together with the cellular DNA damage responses, modulate cell proliferation, cell survival or cell-to-cell communication, thus contributing to the known carcinogenic effects of PAHs. In the present review, we summarize some of the known non-genotoxic effects of PAHs, focusing primarily on those that have been also shown to be modulated by PAH metabolites. Despite the limitations of the available data, it seems evident that a more attention should be paid to the discrimination between the potential non-genotoxic effects of parental PAHs and those of their metabolites. This may provide further insight into the mechanisms of toxicity of this large and diverse group of environmental pollutants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389200221999201125205725DOI Listing
November 2020

Environmental six-ring polycyclic aromatic hydrocarbons are potent inducers of the AhR-dependent signaling in human cells.

Environ Pollut 2020 Nov 3;266(Pt 2):115125. Epub 2020 Jul 3.

Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.

The toxicities of many environmental polycyclic aromatic hydrocarbons (PAHs), in particular those of high-molecular-weight PAHs (with MW higher than 300), remain poorly characterized. The objective of this study was to evaluate the ability of selected environmentally relevant PAHs with MW 302 (MW302 PAHs) to activate the aryl hydrocarbon receptor (AhR), since this represents a major toxic mode of action of PAHs. A large number of the evaluated compounds exhibited strong AhR-mediated activities, in particular in human models. The studied MW302 PAHs also significantly contributed to the overall calculated AhR activities of complex environmental mixtures, including both defined standard reference materials and collected diesel exhaust particles. The high AhR-mediated activities of representative MW302 PAHs, e.g. naphtho[1,2-k]fluoranthene, corresponded with the modulation of expression of relevant AhR target genes in a human lung cell model, or with the AhR-dependent suppression of cell cycle progression/proliferation in estrogen-sensitive cells. This was in a marked contrast with the limited genotoxicity of the same compound(s). Given the substantial levels of the AhR-activating MW302 PAHs in combustion particles, it seems important to continue to investigate the toxic modes of action of this large group of PAHs associated with airborne particulate matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115125DOI Listing
November 2020

Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors.

Biochim Biophys Acta Mol Cell Biol Lipids 2020 09 21;1865(9):158742. Epub 2020 May 21.

Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2020.158742DOI Listing
September 2020

Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles.

Nanomaterials (Basel) 2020 Mar 18;10(3). Epub 2020 Mar 18.

Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.

We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 10 NPs/m) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA. The inhalation resulted in the deregulation of mRNA transcripts: we detected 170, 590, 534, and 1551 differentially expressed transcripts after 3 days, 2 weeks, 6 weeks, and 3 months of inhalation, respectively. Biological processes and pathways affected by inhalation, differed between 3 days exposure (collagen formation) and longer treatments (immune response). Periods of two weeks exposure further induced apoptotic processes, 6 weeks of inhalation affected the cell cycle, and 3 months of treatment impacted the processes related to cell adhesion. The expression of miRNA was not affected by 3 days of inhalation. Prolonged exposure periods modified miRNA levels, although the numbers were relatively low (17, 18, and 38 miRNAs, for periods of 2 weeks, 6 weeks, and 3 months, respectively). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis based on miRNA-mRNA interactions, revealed the deregulation of processes implicated in the immune response and carcinogenesis. Global DNA methylation was not significantly affected in any of the exposure periods. In summary, the inhalation of CuO NPs impacted on both mRNA and miRNA expression. A significant transcriptomic response was already observed after 3 days of exposure. The affected biological processes and pathways indicated the negative impacts on the immune system and potential role in carcinogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano10030550DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153614PMC
March 2020

Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages.

Sci Rep 2020 03 16;10(1):4780. Epub 2020 Mar 16.

Veterinary Research Institute, Brno, Czech Republic.

Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-60284-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075985PMC
March 2020

Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: Phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples.

PLoS One 2020 30;15(1):e0228010. Epub 2020 Jan 30.

Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.

Identification of changes of phospholipid (PL) composition occurring during colorectal cancer (CRC) development may help us to better understand their roles in CRC cells. Here, we used LC-MS/MS-based PL profiling of cell lines derived from normal colon mucosa, or isolated at distinct stages of CRC development, in order to study alterations of PL species potentially linked with cell transformation. We found that a detailed evaluation of phosphatidylinositol (PI) and phosphatidylserine (PS) classes allowed us to cluster the studied epithelial cell lines according to their origin: i) cells originally derived from normal colon tissue (NCM460, FHC); ii) cell lines derived from colon adenoma or less advanced differentiating adenocarcinoma cells (AA/C1, HT-29); or, iii) cells obtained by in vitro transformation of adenoma cells and advanced colon adenocarcinoma cells (HCT-116, AA/C1/SB10, SW480, SW620). Although we tentatively identified several PS and PI species contributing to cell line clustering, full PI and PS profiles appeared to be a key to the successful cell line discrimination. In parallel, we compared PL composition of primary epithelial (EpCAM-positive) cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients, with PL profiles of cell lines derived from normal colon mucosa (NCM460) and from colon adenocarcinoma (HCT-116, SW480) cells, respectively. In general, higher total levels of all PL classes were observed in tumor cells. The overall PL profiles of the cell lines, when compared with the respective patient-derived cells, exhibited similarities. Nevertheless, there were also some notable differences in levels of individual PL species. This indicated that epithelial cell lines, derived either from normal colon tissue or from CRC cells, could be employed as models for functional lipidomic analyses of colon cells, albeit with some caution. The biological significance of the observed PL deregulation, or their potential links with specific CRC stages, deserve further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228010PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992008PMC
April 2020

Screening of Cellular Stress Responses Induced by Ambient Aerosol Ultrafine Particle Fraction PM0.5 in A549 Cells.

Int J Mol Sci 2019 Dec 13;20(24). Epub 2019 Dec 13.

Veterinary Research Institute, Department of Chemistry and Toxicology, Hudcova 296/70, 62100 Brno, Czech Republic.

Effects of airborne particles on the expression status of markers of cellular toxic stress and on the release of eicosanoids, linked with inflammation and oxidative damage, remain poorly characterized. Therefore, we proposed a set of various methodological approaches in order to address complexity of PM0.5-induced toxicity. For this purpose, we used a well-characterized model of A549 pulmonary epithelial cells exposed to a non-cytotoxic concentration of ambient aerosol particle fraction PM0.5 for 24 h. Electron microscopy confirmed accumulation of PM0.5 within A549 cells, yet, autophagy was not induced. Expression profiles of various cellular stress response genes that have been previously shown to be involved in early stress responses, namely unfolded protein response, DNA damage response, and in aryl hydrocarbon receptor (AhR) and p53 signaling, were analyzed. This analysis revealed induction of GREM1, EGR1, CYP1A1, CDK1A, PUMA, NOXA and GDF15 and suppression of SOX9 in response to PM0.5 exposure. Analysis of eicosanoids showed no oxidative damage and only a weak anti-inflammatory response. In conclusion, this study helps to identify novel gene markers, GREM1, EGR1, GDF15 and SOX9, that may represent a valuable tool for routine testing of PM0.5-induced in vitro toxicity in lung epithelial cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20246310DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940800PMC
December 2019

Colon Cancer and Perturbations of the Sphingolipid Metabolism.

Int J Mol Sci 2019 Nov 30;20(23). Epub 2019 Nov 30.

Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.

The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20236051DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929044PMC
November 2019

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors.

Toxicol Sci 2019 12;172(2):368-384

Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic.

The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfz202DOI Listing
December 2019

Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization.

Mol Pharm 2019 08 24;16(8):3441-3451. Epub 2019 Jun 24.

Veterinary Research Institute , Brno 62100 , Czech Republic.

Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00225DOI Listing
August 2019

Modulation of endocrine nuclear receptor activities by polyaromatic compounds present in fractionated extracts of diesel exhaust particles.

Sci Total Environ 2019 Aug 27;677:626-636. Epub 2019 Apr 27.

Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic. Electronic address:

Organic pollutants associated with diesel exhaust particles (DEP), such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives, may negatively impact human health. However, a comprehensive overview of their effects on endocrine nuclear receptor activities is still missing. Here, we evaluated the effects of extracts and chromatographic fractions (fractionated according to increasing polarity) of two standard reference materials derived from distinct types of diesel engines (SRM 2975, SRM 1650b), on activation of androgen receptor (AR), estrogen receptor alpha (ERα), peroxisome proliferator-activated receptor γ (PPARγ), glucocorticoid receptor (GR) and thyroid receptor α (TRα), using human cell-based reporter gene assays. Neither DEP standard modulated AR or GR activities. Crude extracts and fractions of SRM 1650b and SRM 2975 suppressed ERα-mediated activity in the ER-CALUX™ assay; however, this effect could be partly linked to their cytotoxicity in this cell line. We observed that only SRM 2975 extract and its fractions were partial PPARγ inducers, while SRM 1650b extract was not active towards this receptor. Importantly, we found that both extracts and polar fractions of SRM activated TRα and significantly potentiated the activity of endogenous TRα ligand, triiodothyronine. Based on a detailed chemical analysis of both extracts and their polar fractions, we identified several oxygenated PAH derivatives, that were present at relatively high levels in the analyzed DEP standards, including 3-nitrobenzanthrone (3-NBA), anthracene-9,10-dione, phenanthrene-9,10-dione, 9H-fluoren-9-one or benzo[a]anthracene-7,12-dione, to activate TRα activity. Nevertheless, these compounds provided only a minor contribution to the overall TRα activity identified in polar fractions. This suggests that yet unidentified polar polyaromatic compounds associated with DEP may, apart from their known impact on the aryl hydrocarbon receptor or steroid signaling, deregulate activities of additional nuclear receptors, in particular of TRα. This illustrates the need to better characterize endocrine disrupting activities of DEP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.04.390DOI Listing
August 2019

A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity - a kinetic study of a continuous three-month exposure.

Nanotoxicology 2019 09 23;13(7):952-963. Epub 2019 Apr 23.

Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences , Prague , Czech Republic.

The inhalation or application of nanoparticles (NPs) has serious impacts on immunological reactivity. However, the effects of NPs on the immune system are influenced by numerous factors, which cause a high variability in the results. Here, mice were exposed to a three month continuous inhalation of copper oxide (CuO) NPs, and at different time intervals (3, 14, 42 and 93 days), the composition of cell populations of innate and adaptive immunity was evaluated in the spleen by flow cytometry. The ability of spleen cells from exposed and control mice to respond to stimulation with T- or B-cell mitogens by proliferation and by production of cytokines IL-2, IL-6, IL-10, IL-17 and IFN-γ was characterized. The results showed that the inhalation of CuO NPs predominantly affects the cells of innate immunity (changes in the proportion of eosinophils, neutrophils, macrophages and antigen-presenting cells) with a minimal effect on the percentage of T and B lymphocytes. However, the proliferative and secretory activity of T cells was already significantly enhanced after 3 days from the start of inhalation, decreased on day 14 and normalized at the later time intervals. There was no correlation between the impacts of NPs on the cells of innate and adaptive immunity. The results have shown that the inhalation of CuO NPs significantly alters the composition of cell populations of innate immunity and modulates the proliferation and production of cytokines by cells of the adaptive immune system. However, the immunomodulatory effects of inhaled NPs strongly depend on the time of inhalation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/17435390.2019.1602679DOI Listing
September 2019

n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models.

Food Chem Toxicol 2019 Feb 17;124:374-384. Epub 2018 Dec 17.

Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic. Electronic address:

Dietary carcinogens, such as benzo[a]pyrene (BaP), are suspected to contribute to colorectal cancer development. n-3 Polyunsaturated fatty acids (PUFAs) decrease colorectal cancer risk in individuals consuming diets rich in PUFAs. Here, we investigated the impact of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid on metabolism and genotoxicity of BaP in human cell models derived from the colon: HT-29 and HCT-116 cell lines. Both PUFAs reduced levels of excreted BaP metabolites, in particular BaP-tetrols and hydroxylated BaP metabolites, as well as formation of DNA adducts in HT-29 and HCT-116 cells. However, EPA appeared to be a more potent inhibitor of formation of some intracellular BaP metabolites, including BaP-7,8-dihydrodiol. EPA also reduced phosphorylation of histone H2AX (Ser139) in HT-29 cells, which indicated that it may reduce further forms of DNA damage, including DNA double strand breaks. Both PUFAs inhibited induction of CYP1 activity in colon cells determined as 7-ethoxyresorufin-O-deethylase (EROD); this was at least partly linked with inhibition of induction of CYP1A1, 1A2 and 1B1 mRNAs. The downregulation and/or inhibition of CYP1 enzymes by PUFAs could thus alter metabolism and reduce genotoxicity of BaP in human colon cells, which might contribute to known chemopreventive effects of PUFAs in colon epithelium.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2018.12.021DOI Listing
February 2019

Inhalation of ZnO Nanoparticles: Splice Junction Expression and Alternative Splicing in Mice.

Toxicol Sci 2019 03;168(1):190-200

*Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic.

Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfy288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390655PMC
March 2019

Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust.

Occup Environ Med 2019 01 13;76(1):10-16. Epub 2018 Nov 13.

Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway.

Objectives: This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW).

Methods: TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry).

Results: PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D and 9-hydroxyoctadecadienoic acid in TFW compared with referents.

Conclusion: Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/oemed-2018-105445DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327869PMC
January 2019

Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation.

Toxicol Sci 2018 10;165(2):447-461

Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfy153DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154273PMC
October 2018

In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses.

Toxicol Sci 2018 11;166(1):51-64

Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway.

Occupational exposure to diesel exhaust may cause lung cancer in humans. Mechanisms include DNA-damage and inflammatory responses. Here, the potential of NIST SRM2975 diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) in vitro was investigated. Long-term exposure of HBEC3 to DEP led to increased colony growth in soft agar. Several DEP-transformed cell lines were established and based on the expression of epithelial-to-mesenchymal-transition (EMT) marker genes, one of them (T2-HBEC3) was further characterized. T2-HBEC3 showed a mesenchymal/fibroblast-like morphology, reduced expression of CDH1, and induction of CDH2 and VIM. T2-HBEC3 had reduced migration potential compared with HBEC3 and little invasion capacity. Gene expression profiling showed baseline differences between HBEC3 and T2-HBEC3 linked to lung carcinogenesis. Next, to assess differences in sensitivity to DEP between parental HBEC3 and T2-HBEC3, gene expression profiling was carried out after DEP short-term exposure. Results revealed changes in genes involved in metabolism of xenobiotics and lipids, as well as inflammation. HBEC3 displayed a higher steady state of IL1B gene expression and release of IL-1β compared with T2-HBEC3. HBEC3 and T2-HBEC3 showed similar susceptibility towards DEP-induced genotoxic effects. Liquid-chromatography-tandem-mass-spectrometry was used to measure secretion of eicosanoids. Generally, major prostaglandin species were released in higher concentrations from T2-HBEC3 than from HBEC3 and several analytes were altered after DEP-exposure. In conclusion, long-term exposure to DEP-transformed human bronchial epithelial cells in vitro. Differences between HBEC3 and T2-HBEC3 regarding baseline levels and DEP-induced changes of particularly CYP1A1, IL-1β, PGE2, and PGF2α may have implications for acute inflammation and carcinogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfy183DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204768PMC
November 2018

Relative effective potencies of dioxin-like compounds in rodent and human lung cell models.

Toxicology 2018 07 5;404-405:33-41. Epub 2018 May 5.

Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic. Electronic address:

Toxicity of dioxin-like compounds (DLCs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls, is largely mediated via aryl hydrocarbon receptor (AhR) activation. AhR-mediated gene expression can be tissue-specific; however, the inducibility of AhR in the lungs, a major target of DLCs, remains poorly characterized. In this study, we developed relative effective potencies (REPs) for a series of DLCs in both rodent (MLE-12, RLE-6TN) and human (A549, BEAS-2B) lung and bronchial epithelial cell models, using expression of both canonical (CYP1A1, CYP1B1) and less well characterized (TIPARP, AHRR, ALDH3A1) AhR target genes. The use of rat, murine and human cell lines allowed us to determine both species-specific differences in sensitivity of responses to DLCs in lung cellular models and deviations from established WHO toxic equivalency factor values (TEF) values. Finally, expression of selected AhR target genes was determined in vivo, using lung tissues of female rats exposed to a single oral dose of DLCs and compared with the obtained in vitro data. All cell models were highly sensitive to DLCs, with murine MLE-12 cells being the most sensitive and human A549 cells being the least sensitive. Interestingly, we observed that four AhR target genes were more sensitive than CYP1A1 in lung cell models (CYP1B1, AHRR, TIPARP and/or ALDH3A1). We found some deviations, with strikingly low REPs for polychlorinated biphenyls PCBs 105, 167, 169 and 189 in rat RLE-6TN cells-derived REPs for a series of 20 DLCs evaluated in this study, as compared with WHO TEF values. For other DLCs, including PCBs 126, 118 and 156, REPs were generally in good accordance with WHO TEF values. This conclusion was supported by in vivo data obtained in rat lung tissue. However, we found that human lung REPs for 2,3,4,7,8-pentachlorodibenzofuran and PCB 126 were much lower than the respective rat lung REPs. Furthermore, PCBs 118 and 156 were almost inactive in these human cells. Our observations may have consequences for risk assessment. Given the differences observed between rat and human data sets, development of human-specific REP/TEFs, and the use of CYP1B1, AHRR, TIPARP and/or ALDH3A1 mRNA inducibility as sensitive endpoints, are recommended for assessment of relative effective potencies of DLCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2018.05.004DOI Listing
July 2018

Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.

Toxicol Lett 2018 Aug 25;292:162-174. Epub 2018 Apr 25.

Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic. Electronic address:

Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2018.04.024DOI Listing
August 2018

In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion.

Environ Pollut 2018 Jun 15;237:473-486. Epub 2018 Mar 15.

Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic. Electronic address:

The mechanisms contributing to toxic effects of airborne lower-chlorinated PCB congeners (LC-PCBs) remain poorly characterized. We evaluated in vitro toxicities of environmental LC-PCBs found in both indoor and outdoor air (PCB 4, 8, 11, 18, 28 and 31), and selected hydroxylated metabolites of PCB 8, 11 and 18, using reporter gene assays, as well as other functional cellular bioassays. We focused on processes linked with endocrine disruption, tumor promotion and/or regulation of transcription factors controlling metabolism of both endogenous compounds and xenobiotics. The tested LC-PCBs were found to be mostly efficient anti-androgenic (within nanomolar - micromolar range) and estrogenic (at micromolar concentrations) compounds, as well as inhibitors of gap junctional intercellular communication (GJIC) at micromolar concentrations. PCB 8, 28 and 31 were found to partially inhibit the aryl hydrocarbon receptor (AhR)-mediated activity. The tested LC-PCBs were also partial constitutive androstane receptor (CAR) and pregnane X receptor (PXR) agonists, with PCB 4, 8 and 18 being the most active compounds. They were inactive towards other nuclear receptors, such as vitamin D receptor, thyroid receptor α, glucocorticoid receptor or peroxisome proliferator-activated receptor γ. We found that only PCB 8 contributed to generation of oxidative stress, while all tested LC-PCBs induced arachidonic acid release (albeit without further modulations of arachidonic acid metabolism) in human lung epithelial cells. Importantly, estrogenic effects of hydroxylated (OH-PCB) metabolites of LC-PCBs (4-OH-PCB 8, 4-OH-PCB 11 and 4'-OH-PCB 18) were higher than those of the parent PCBs, while their other toxic effects were only slightly altered or suppressed. This suggested that metabolism may alter toxicity profiles of LC-PCBs in a receptor-specific manner. In summary, anti-androgenic and estrogenic activities, acute inhibition of GJIC and suppression of the AhR-mediated activity were found to be the most relevant modes of action of airborne LC-PCBs, although they partially affected also additional cellular targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.02.067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908724PMC
June 2018

Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells.

Toxicol In Vitro 2018 Apr 9;48:329-341. Epub 2018 Feb 9.

Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague, Czech Republic. Electronic address:

Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2018.02.002DOI Listing
April 2018

Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells.

J Cell Biochem 2018 06 27;119(6):4664-4679. Epub 2018 Feb 27.

Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.

Docosahexaenoic acid (DHA) and sodium butyrate (NaBt) exhibit a number of interactive effects on colon cancer cell growth, differentiation, or apoptosis; however, the molecular mechanisms responsible for these interactions and their impact on cellular lipidome are still not fully clear. Here, we show that both dietary agents together induce dynamic alterations of lipid metabolism, specific cellular lipid classes, and fatty acid composition. In HT-29 cell line, a model of differentiating colon carcinoma cells, NaBt supported incorporation of free DHA into non-polar lipids and their accumulation in cytoplasmic lipid droplets. DHA itself was not incorporated into sphingolipids; however, it significantly altered representation of individual ceramide (Cer) classes, in particular in combination with NaBt (DHA/NaBt). We observed altered expression of enzymes involved in Cer metabolism in cells treated with NaBt or DHA/NaBt, and exogenous Cer 16:0 was found to promote induction of apoptosis in differentiating HT-29 cells. NaBt, together with DHA, increased n-3 fatty acid synthesis and attenuated metabolism of monounsaturated fatty acids. Finally, DHA and/or NaBt altered expression of proteins involved in synthesis of fatty acids, including elongase 5, stearoyl CoA desaturase 1, or fatty acid synthase, with NaBt increasing expression of caveolin-1 and CD36 transporter, which may further promote DHA incorporation and its impact on cellular lipidome. In conclusion, our results indicate that interactions of DHA and NaBt exert complex changes in cellular lipidome, which may contribute to the alterations of colon cancer cell differentiation/apoptotic responses. The present data extend our knowledge about the nature of interactive effects of dietary fatty acids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.26641DOI Listing
June 2018

Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.

Environ Sci Pollut Res Int 2018 Jun 9;25(17):16411-16419. Epub 2017 Nov 9.

Department of Chemistry and Toxicology, Veterinary Research Institute, 62100, Brno, Czech Republic.

PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-0683-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943194PMC
June 2018

Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models.

Arch Toxicol 2017 May 9;91(5):2135-2150. Epub 2016 Nov 9.

Department of Cytokinetics, Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.

Butyrate, a short-chain fatty acid produced by fermentation of dietary fiber, is an important regulator of colonic epithelium homeostasis. In this study, we investigated the impact of this histone deacetylase (HDAC) inhibitor on expression/activity of cytochrome P450 family 1 (CYP1) and on metabolism of carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP), in colon epithelial cells. Sodium butyrate (NaBt) strongly potentiated the BaP-induced expression of CYP1A1 in human colon carcinoma HCT116 cells. It also co-stimulated the 7-ethoxyresorufin-O-deethylase (EROD) activity induced by the 2,3,7,8-tetrachlorodibenzo-p-dioxin, a prototypical ligand of the aryl hydrocarbon receptor. Up-regulation of CYP1A1 expression/activity corresponded with an enhanced metabolism of BaP and formation of covalent DNA adducts. NaBt significantly potentiated CYP1A1 induction and/or metabolic activation of BaP also in other human colon cell models, colon adenoma AA/C1 cells, colon carcinoma HT-29 cells, or in NCM460D cell line derived from normal colon mucosa. Our results suggest that the effects of NaBt were due to its impact on histone acetylation, because additional HDAC inhibitors (trichostatin A and suberanilohydroxamic acid) likewise increased both the induction of EROD activity and formation of covalent DNA adducts. NaBt-induced acetylation of histone H3 (at Lys14) and histone H4 (at Lys16), two histone modifications modulated during activation of CYP1A1 transcription, and it reduced binding of HDAC1 to the enhancer region of CYP1A1 gene. This in vitro study suggests that butyrate, through modulation of histone acetylation, may potentiate induction of CYP1A1 expression, which might in turn alter the metabolism of BaP within colon epithelial cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-016-1887-4DOI Listing
May 2017

Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells.

Int J Mol Sci 2016 Nov 3;17(11). Epub 2016 Nov 3.

Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague, Czech Republic.

This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms17111833DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133834PMC
November 2016

Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay.

Environ Pollut 2017 Jan 29;220(Pt A):307-316. Epub 2016 Sep 29.

Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic. Electronic address:

Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further attention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2016.09.064DOI Listing
January 2017

Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549).

Int J Mol Sci 2016 Aug 26;17(9). Epub 2016 Aug 26.

Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic.

We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms17091393DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037673PMC
August 2016

Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells.

Stem Cells Int 2016 4;2016:4326194. Epub 2016 May 4.

Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic.

The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2016/4326194DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870370PMC
June 2016

Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities.

Eur J Nutr 2017 Jun 16;56(4):1493-1508. Epub 2016 Mar 16.

Veterinary Research Institute, v.v.i., Brno, Czech Republic.

Purpose: Although beneficial effects of the dietary n-3 docosahexaenoic acid (DHA) or butyrate in colon carcinogenesis have been implicated, the mechanisms of their action are not fully clear. Here, we investigated modulations of composition of individual phospholipid (PL) classes, with a particular emphasis on cardiolipins (CLs), in colon cells treated with DHA, sodium butyrate (NaBt), or their combination (DHA/NaBt), and we evaluated possible associations between lipid changes and cell fate after fatty acid treatment.

Methods: In two distinct human colon cell models, foetal colon (FHC) and adenocarcinoma (HCT-116) cells, we compared patterns and composition of individual PL classes following the fatty acid treatment by HPLC-MS/MS. In parallel, we measured the parameters reflecting cell proliferation, differentiation and death.

Results: In FHC cells, NaBt induced primarily differentiation, while co-treatment with DHA shifted their response towards cell death. In contrast, NaBt induced apoptosis in HCT-116 cells, which was not further affected by DHA. DHA was incorporated in all main PL types, increasing their unsaturation, while NaBt did not additionally modulate these effects in either cell model. Nevertheless, we identified an unusually wide range of CL species to be highly increased by NaBt and particularly by DHA/NaBt, and these effects were more pronounced in HCT-116 cells. DHA and DHA/NaBt enhanced levels of high molecular weight and more unsaturated CL species, containing DHA, which was specific for either differentiation or apoptotic responses.

Conclusions: We identified a wide range of CL species in the colon cells which composition was significantly modified after DHA and NaBt treatment. These specific CL modulations might contribute to distinct cellular differentiation or apoptotic responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-016-1196-yDOI Listing
June 2017