Publications by authors named "Minkai Yang"

3 Publications

  • Page 1 of 1

Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway.

Bioorg Chem 2021 Mar 29;111:104872. Epub 2021 Mar 29.

State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC = 4.52 ± 0.28 μM; SK: IC = 7.62 ± 0.26 μM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/β-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2021

Differential relieving effects of shikonin and its derivatives on inflammation and mucosal barrier damage caused by ulcerative colitis.

PeerJ 2021 7;9:e10675. Epub 2021 Jan 7.

State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China.

Background: Ulcerative colitis (UC) is one of the most challenging human diseases. Natural shikonin (SK) and its derivatives (with have higher accumulation) isolated from the root of have numerous beneficial effects, such as wound healing and anti-inflammatory activities. Some researchers have reported that hydroxynaphthoquinone mixture (HM) and SK attenuate the acute UC induced by dextran sulfate sodium (DSS). However, no existing study has systemically investigated the effectiveness of SK and other hydroxynaphthoquinone natural derivative monomers on UC.

Methods: In this study, mice were treated with SK and its derivatives (25 mg/kg) and mesalazine (200 mg/kg) after DSS administration daily for one week. Disease progression was monitored daily by observing the changes in clinical signs and body weight.

Results: Intragastric administration natural single naphthoquinone attenuated the malignant symptoms induced by DSS. SK or its derivatives remarkably suppressed the serum levels of pro-inflammatory cytokines while increasing the inflammatory cytokine interleukin (IL)-10 . Additionally, both SK and alkanin restrained the activities of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) in serum and colonic tissues. SK and its derivatives inhibited the activation of nucleotide binding oligomerization domain-like receptors (NLRP3) inflammasome and NF-κB signaling pathway, thereby relieving the DSS-induced disruption of epithelial tight junction (TJ) in colonic tissues.

Conclusions: Our findings shed more lights on the pharmacological efficacy of SK and its derivatives in UC against inflammation and mucosal barrier damage.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2021

Impact of a G2-EPSPS & GAT Dual Transgenic Glyphosate-Resistant Soybean Line on the Soil Microbial Community under Field Conditions Affected by Glyphosate Application.

Microbes Environ 2020 ;35(4)

Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University.

In the past thirty years, the biosafety of the aboveground part of crops, including horizontal gene transferal through pollen dispersal and hybridization, has been the focus of research; however, microbial communities in the underground part are attracting increasing attention. In the present study, the soybean root-associated bacterial communities of the G2-EPSPS plus GAT transgenic soybean line Z106, its recipient variety ZH10, and Z106 treated with glyphosate (Z106J) were compared at the seedling, flowering, and seed filling stages by high-throughput sequencing of the V4 hypervariable regions of 16S rRNA gene amplicons using Illumina MiSeq. The results obtained showed no significant differences in the alpha/beta diversities of root-associated bacterial communities at the three stages among ZH10, Z106, and Z106J under field growth conditions; however, the relative abundance of four main nitrogen-fixing bacterial genera significantly differed among ZH10, Z106, and Z106J. Ternary plot results indicated that in the root compartment, the proportional contributions of rhizobial nitrogen-fixing Ensifer fredii and Bradyrhizobium elkanii, which exhibit an extremely broad nodulation host range, markedly differed among the three treatments at the three stages. Thus, the present results indicate that transgenic G2-EPSPS and GAT soybean may induce different changes in functional bacterial species in soil, such as E. fredii and B. elkanii, from ZH10, which were compensated for/enriched at the flowering and seed filling stages, respectively, to some extent through as of yet unknown mechanisms by transgenic soybean treated with glyphosate.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2020