Publications by authors named "Minjung Kho"

13 Publications

  • Page 1 of 1

Trans-ethnic Meta-analysis of Interactions between Genetics and Early Life Socioeconomic Context on Memory Performance and Decline in Older Americans.

J Gerontol A Biol Sci Med Sci 2021 Aug 27. Epub 2021 Aug 27.

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI.

Later life cognitive function is influenced by genetics as well as early- and later-life socioeconomic context. However, few studies have examined the interaction between genetics and early childhood factors. Using gene-based tests (iSKAT/iSKAT-O), we examined whether common and/or rare exonic variants in 39 gene regions previously associated with cognitive performance, dementia, and related traits had an interaction with childhood socioeconomic context (parental education and financial strain) on memory performance or decline in European ancestry (EA, N=10,468) and African ancestry (AA, N=2,252) participants from the Health and Retirement Study. Of the 39 genes, 22 in EA and 19 in AA had nominally significant interactions with at least one childhood socioeconomic measure on memory performance and/or decline; however, all but one (father's education by SLC24A4 in AA) were not significant after multiple testing correction (FDR <0.05). In trans-ethnic meta-analysis, two genes interacted with childhood socioeconomic context (FDR <0.05): mother's education by MS4A4A on memory performance, and father's education by SLC24A4 on memory decline. Both interactions remained significant (p<0.05) after adjusting for respondent's own educational attainment, APOE ε4 status, lifestyle factors, BMI, and comorbidities. For both interactions in EA and AA, the genetic effect was stronger in participants with low parental education. Examination of common and rare variants in genes discovered through GWAS shows that childhood context may interact with key gene regions to jointly impact later life memory function and decline. Genetic effects may be more salient for those with lower childhood socioeconomic status.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glab255DOI Listing
August 2021

Accelerated DNA methylation age and medication use among African Americans.

Aging (Albany NY) 2021 06 3;13(11):14604-14629. Epub 2021 Jun 3.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.

DNA methylation age acceleration, the discrepancy between epigenetic age and chronological age, is associated with mortality and chronic diseases, including diabetes, hypertension, and hyperlipidemia. In this study, we investigate whether medications commonly used to treat these diseases in 15 drug categories are associated with four epigenetic age acceleration measures: HorvathAge acceleration (HorvathAA), HannumAge acceleration (HannumAA), PhenoAge acceleration, and GrimAge acceleration (GrimAA) using cross-sectional (Phase 1, N=1,100) and longitudinal (Phases 1 and 2, N=266) data from African Americans in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. In cross-sectional analyses, the use of calcium channel blockers was associated with 1.27 years lower HannumAA after adjusting for covariates including hypertension (p=0.001). Longitudinal analyses showed that, compared to those who never used antihypertensives, those who started to take antihypertensives after Phase 1 had a 0.97-year decrease in GrimAA (p=0.007). In addition, compared to those who never used NSAID analgesics, those who started to take them after Phase 1 had a 2.61-year increase in HorvathAA (p=0.0005). Our study demonstrates that three commonly used medications are associated with DNAm age acceleration in African Americans and sheds light on the potential epigenetic effects of pharmaceuticals on aging at the cellular level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.203115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221348PMC
June 2021

Epigenome-wide association study identifies DNA methylation sites associated with target organ damage in older African Americans.

Epigenetics 2021 Aug 26;16(8):862-875. Epub 2020 Oct 26.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.

Target organ damage (TOD) manifests as vascular injuries in the body organ systems associated with long-standing hypertension. DNA methylation in peripheral blood leukocytes can capture inflammatory processes and gene expression changes underlying TOD. We investigated the association between epigenome-wide DNA methylation and five measures of TOD (estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), left ventricular mass index (LVMI), relative wall thickness (RWT), and white matter hyperintensity (WMH)) in 961 African Americans from hypertensive sibships. A multivariate (multi-trait) model of eGFR, UACR, LVMI, and RWT identified seven CpGs associated with at least one of the traits (cg21134922, cg04816311 near , cg09155024, cg10254690 near , cg07660512, cg12661888 near , and cg02264946 near ) at FDR q < 0.1. Adjusting for blood pressure, body mass index, and type 2 diabetes attenuated the association for four CpGs. DNA methylation was associated with -gene expression for some CpGs, but no significant mediation by gene expression was detected. Mendelian randomization analyses suggested causality between three CpGs and eGFR (cg04816311, cg10254690, and cg07660512). We also assessed whether the identified CpGs were associated with TOD in 614 African Americans in the Hypertension Genetic Epidemiology Network (HyperGEN) study. Out of three CpGs available for replication, cg04816311 was significantly associated with eGFR (p = 0.0003), LVMI (p = 0.0003), and RWT (p = 0.002). This study found evidence of an association between DNA methylation and TOD in African Americans and highlights the utility of using a multivariate-based model that leverages information across related traits in epigenome-wide association studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15592294.2020.1827717DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331005PMC
August 2021

Epigenetic loci for blood pressure are associated with hypertensive target organ damage in older African Americans from the genetic epidemiology network of Arteriopathy (GENOA) study.

BMC Med Genomics 2020 09 11;13(1):131. Epub 2020 Sep 11.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.

Background: Hypertension is a major modifiable risk factor for arteriosclerosis that can lead to target organ damage (TOD) of heart, kidneys, and peripheral arteries. A recent epigenome-wide association study for blood pressure (BP) identified 13 CpG sites, but it is not known whether DNA methylation at these sites is also associated with TOD.

Methods: In 1218 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, a cohort of hypertensive sibships, we evaluated the associations between methylation at these 13 CpG sites measured in peripheral blood leukocytes and five TOD traits assessed approximately 5 years later.

Results: Ten significant associations were found after adjustment for age, sex, blood cell counts, time difference between CpG and TOD measurement, and 10 genetic principal components (FDR q < 0.1): two with estimated glomerular filtration rate (eGFR, cg06690548, cg10601624), six with urinary albumin-to-creatinine ratio (UACR, cg16246545, cg14476101, cg19693031, cg06690548, cg00574958, cg22304262), and two with left ventricular mass indexed to height (LVMI, cg19693031, cg00574958). All associations with eGFR and four associations with UACR remained significant after further adjustment for body mass index (BMI), smoking status, and diabetes. We also found significant interactions between cg06690548 and BMI on UACR, and between 3 CpG sites (cg19693031, cg14476101, and cg06690548) and diabetes on UACR (FDR q < 0.1). Mediation analysis showed that 4.7% to 38.1% of the relationship between two CpG sites (cg19693031 and cg00574958) and two TOD measures (UACR and LVMI) was mediated by blood pressure (Bonferroni-corrected P < 0.05). Mendelian randomization analysis suggests that methylation at two sites (cg16246545 and cg14476101) in PHGDH may causally influence UACR.

Conclusions: In conclusion, we found compelling evidence for associations between arteriosclerotic traits of kidney and heart and previously identified blood pressure-associated DNA methylation sites. This study may lend insight into the role of DNA methylation in pathological mechanisms underlying target organ damage from hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12920-020-00791-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488710PMC
September 2020

Genome-Wide Association Meta-Analysis of Individuals of European Ancestry Identifies Suggestive Loci for Sodium Intake, Potassium Intake, and Their Ratio Measured from 24-Hour or Half-Day Urine Samples.

J Nutr 2020 10;150(10):2635-2645

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Background: Excess sodium intake and insufficient potassium intake are risk factors for hypertension, but there is limited knowledge regarding genetic factors that influence intake. Twenty-hour or half-day urine samples provide robust estimates of sodium and potassium intake, outperforming other measures such as spot urine samples and dietary self-reporting.

Objective: The aim of this study was to investigate genomic regions associated with sodium intake, potassium intake, and sodium-to-potassium ratio measured from 24-h or half-day urine samples.

Methods: Using samples of European ancestry (mean age: 54.2 y; 52.3% women), we conducted a meta-analysis of genome-wide association studies in 4 cohorts with 24-h or half-day urine samples (n = 6,519), followed by gene-based analysis. Suggestive loci (P < 10-6) were examined in additional European (n = 844), African (n = 1,246), and Asian (n = 2,475) ancestry samples.

Results: We found suggestive loci (P < 10-6) for all 3 traits, including 7 for 24-h sodium excretion, 4 for 24-h potassium excretion, and 4 for sodium-to-potassium ratio. The most significant locus was rs77958157 near cocaine- and amphetamine-regulated transcript prepropeptide (CARTPT) , a gene involved in eating behavior and appetite regulation (P = 2.3 × 10-8 with sodium-to-potassium ratio). Two suggestive loci were replicated in additional samples: for sodium excretion, rs12094702 near zinc finger SWIM-type containing 5 (ZSWIM5) was replicated in the Asian ancestry sample reaching Bonferroni-corrected significance (P = 0.007), and for potassium excretion rs34473523 near sodium leak channel (NALCN) was associated at a nominal P value with potassium excretion both in European (P = 0.043) and African (P = 0.043) ancestry cohorts. Gene-based tests identified 1 significant gene for sodium excretion, CDC42 small effector 1 (CDC42SE1), which is associated with blood pressure regulation.

Conclusions: We identified multiple suggestive loci for sodium and potassium intake near genes associated with eating behavior, nervous system development and function, and blood pressure regulation in individuals of European ancestry. Further research is needed to replicate these findings and to provide insight into the underlying genetic mechanisms by which these genomic regions influence sodium and potassium intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxaa241DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549298PMC
October 2020

Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA.

Am J Hum Genet 2020 04 26;106(4):496-512. Epub 2020 Mar 26.

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Most existing expression quantitative trait locus (eQTL) mapping studies have been focused on individuals of European ancestry and are underrepresented in other populations including populations with African ancestry. Lack of large-scale well-powered eQTL mapping studies in populations with African ancestry can both impede the dissemination of eQTL mapping results that would otherwise benefit individuals with African ancestry and hinder the comparable analysis for understanding how gene regulation is shaped through evolution. We fill this critical knowledge gap by performing a large-scale in-depth eQTL mapping study on 1,032 African Americans (AA) and 801 European Americans (EA) in the GENOA cohort. We identified a total of 354,931 eSNPs in AA and 371,309 eSNPs in EA, with 112,316 eSNPs overlapped between the two. We found that eQTL harboring genes (eGenes) are enriched in metabolic pathways and tend to have higher SNP heritability compared to non-eGenes. We found that eGenes that are common in the two populations tend to be less conserved than eGenes that are unique to one population, which are less conserved than non-eGenes. Through conditional analysis, we found that eGenes in AA tend to harbor more independent eQTLs than eGenes in EA, suggesting potentially diverse genetic architecture underlying expression variation in the two populations. Finally, the large sample sizes in GENOA allow us to construct accurate expression prediction models in both AA and EA, facilitating powerful transcriptome-wide association studies. Overall, our results represent an important step toward revealing the genetic architecture underlying expression variation in African Americans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.03.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118581PMC
April 2020

Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration.

Nat Commun 2019 11 12;10(1):5121. Epub 2019 Nov 12.

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands.

Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12958-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851116PMC
November 2019

Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

Nat Commun 2019 01 22;10(1):376. Epub 2019 Jan 22.

Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, 01246903, SP, Brazil.

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-08008-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342931PMC
January 2019

Genetic effects and gene-by-education interactions on episodic memory performance and decline in an aging population.

Soc Sci Med 2021 02 10;271:112039. Epub 2018 Nov 10.

Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA. Electronic address:

Both social and genetic factors contribute to cognitive impairment and decline, yet genetic factors identified through genome-wide association studies (GWAS) explain only a small portion of trait variability. This "missing heritability" may be due to rare, potentially functional, genetic variants not assessed by GWAS, as well as gene-by-social factor interactions not explicitly modeled. Gene-by-social factor interactions may also operate differently across race/ethnic groups. We selected 39 genes that had significant, replicated associations with cognition, dementia, and related traits in published GWAS. Using gene-based analysis (SKAT/iSKAT), we tested whether common and/or rare variants were associated with episodic memory performance and decline either alone or through interaction with education in >10,000 European ancestry (EA) and >2200 African ancestry (AA) respondents from the Health and Retirement Study (HRS). Nine genes in EA and five genes in AA were associated with memory performance or decline (p < 0.05), and these effects did not attenuate after adjusting for education. Interaction between education and CLPTM1 on memory performance was significant in AA (p = 0.003; FDR-adjusted p = 0.038) and nominally significant in EA (p = 0.026). In both ethnicities, low memory performance was associated with CLPTM1 genotype (rs10416261) only for those with less than high school education, and effects persisted after adjusting for APOE ε4. For over 70% of gene-by-education interactions across the genome that were at least nominally significant in either ethnic group (p < 0.05), genetic effects were only observed for those with less than high school education. These results suggest that genetic effects on memory identified in this study are not mediated by education, but there may be important gene-by-education interactions across the genome, including in the broader APOE genomic region, which operate independently of APOE ε4. This work illustrates the importance of developing theoretical frameworks and methodological approaches for integrating social and genomic data to study cognition across ethnic groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.socscimed.2018.11.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510651PMC
February 2021

Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium.

Mol Psychiatry 2019 12 9;24(12):1920-1932. Epub 2018 Jul 9.

Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0079-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326896PMC
December 2019

Multiple susceptibility loci at chromosome 11q23.3 are associated with plasma triglyceride in East Asians.

J Lipid Res 2016 Feb 3;57(2):318-24. Epub 2015 Dec 3.

Institute of Health and Environment, Seoul National University, Seoul, Korea Complex Disease and Genome Epidemiology Branch, Department of Epidemiology, School of Public Health, Seoul National University, Seoul, Korea

Genetic studies of plasma TG levels have identified associations with multiple candidate loci on chromosome11q23.3, which harbors a number of genes, including BUD13, ZNF259, and APOA5-A4-C3-A1. This study aimed to examine whether these multiple candidate genes on the 11q23.3 regions exert independent effects on TG levels or whether their effects are confounded by linkage disequilibrium (LD). We performed a genome-wide association study and consequent fine-mapping analyses on TG levels in two Korean population-based cohorts: the Korea Association Resource study (n = 8,223) and the Healthy Twin study (n = 1,735). A total of 301 loci reached genome-wide significance level in pooled analysis, including 10 SNPs with weak LD (r(2) < 0.06) clustered on 11q23.3: ApoA5 (rs651821, rs2075291); ZNF259 (rs964184, rs603446); BUD13 (rs11216126); Apoa4 (rs7396851); SIK3 (rs12292858); PCSK7 (rs199890178); PAFAH1B2 (rs12420127), and SIDT2 (rs2269399). When the inter-dependence between alleles was examined using conditional models, five loci on BUD13, ZNF259, and ApoA5 showed possible independent associations. A haplotype analysis using five SNPs revealed both hyper- and hypotriglyceridemic haplotypes, which are relatively common in Koreans (haplotype frequency 0.08-0.22). Our findings suggest the presence of multiple functional loci on 11q23.3, which might exert their effects on plasma TG level independently or through complex interactions between functional loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.P063461DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727427PMC
February 2016

Genetic and environmental influences on sodium intake determined by using half-day urine samples: the Healthy Twin Study.

Am J Clin Nutr 2013 Dec 2;98(6):1410-6. Epub 2013 Oct 2.

Complex Disease and Genome Epidemiology Branch, Department of Epidemiology, School of Public Health, Seoul National University, Seoul, Korea (MK, SY, and JS); the Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea (JEL); the Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (Y-MS); the Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea (KL); the Department of Statistics, Sookmyung Women's University, Seoul, Korea (KK); and the Graduate School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Korea (HJ).

Background: Salt is essential in our diet, but excess intake is a well-established risk factor for hypertension. The presence and importance of genetic contributions to salt intake, however, are not well understood.

Objective: The aim of this study was to examine whether a genetic predisposition and an environmental influence exist for sodium intake and salt habit.

Design: In a twin-family cohort, half-day urine samples from 1204 individuals (133 pairs of monozygotic twins, 29 pairs of dizygotic twins, and 880 singletons) were collected to assess 24-h sodium intakes. Daily total sodium intake, sodium density per calorie (Na-D), and salt habit questions were analyzed with adjustment for other epidemiologic characteristics. We calculated heritability (h2) and intraclass correlations to examine the genetic and shared environmental contributions to total sodium intake traits.

Results: The average sodium intake was 208.4 ± 107.0 mmol/d. Men had a higher absolute sodium intake (242.6 ± 117.4 mmol/d), but Na-D did not differ by sex. Moderate genetic influences existed (h2 = 0.31-0.34) for sodium intake and Na-D. We also found that sharing current residence rather than being a family member explained 22% of the variance in Na-D.

Conclusion: Our findings suggest that both genetic predisposition and shared environment contribute to sodium intakes and salt habits alike.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3945/ajcn.113.067967DOI Listing
December 2013

The Healthy Twin Study, Korea updates: resources for omics and genome epidemiology studies.

Twin Res Hum Genet 2013 Feb 7;16(1):241-5. Epub 2012 Dec 7.

Institute of Environment and Health, Seoul National University, Seoul, Korea.

The Healthy Twin Study, Korea (HT) is an ongoing multi-center cohort study that was initiated in 2005, based on a nation-wide twin and family database. Since its inception, the HT has recruited 815 pairs of adult twins and a total of 3,690 individual twins and their families as of July 2012. Here we summarize updates since the previous report in 2006. Besides the increase in size, the HT has been enriched in several aspects: a biobank was constructed for ongoing and future omics studies; and genome-wide single nucleotide polymorphism markers (Affymetrix GeneChip version 6.0, 1 M probes) have been analyzed for 2,200 individuals, which enabled gene identification studies for measured phenotypes. In addition, longitudinal study protocols were established through the HT and a second wave survey was finished in 2010 with >70% follow-up rate. The parallel genome research projects were recently launched, which would expedite multi-omics studies maximizing the twin potentials such as metagenomics and epigenetics studies, and endow us with resources for recruiting more participants. We submit this report to share updates and research opportunities from the HT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/thg.2012.130DOI Listing
February 2013
-->