Publications by authors named "Min Kyoung Sun"

3 Publications

  • Page 1 of 1

Engineered glycomaterial implants orchestrate large-scale functional repair of brain tissue chronically after severe traumatic brain injury.

Sci Adv 2021 Mar 5;7(10). Epub 2021 Mar 5.

Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.

Severe traumatic brain injury (sTBI) survivors experience permanent functional disabilities due to significant volume loss and the brain's poor capacity to regenerate. Chondroitin sulfate glycosaminoglycans (CS-GAGs) are key regulators of growth factor signaling and neural stem cell homeostasis in the brain. However, the efficacy of engineered CS (eCS) matrices in mediating structural and functional recovery chronically after sTBI has not been investigated. We report that neurotrophic factor functionalized acellular eCS matrices implanted into the rat M1 region acutely after sTBI significantly enhanced cellular repair and gross motor function recovery when compared to controls 20 weeks after sTBI. Animals subjected to M2 region injuries followed by eCS matrix implantations demonstrated the significant recovery of "reach-to-grasp" function. This was attributed to enhanced volumetric vascularization, activity-regulated cytoskeleton (Arc) protein expression, and perilesional sensorimotor connectivity. These findings indicate that eCS matrices implanted acutely after sTBI can support complex cellular, vascular, and neuronal circuit repair chronically after sTBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abe0207DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935369PMC
March 2021

Extracellular Vesicles Mediate Neuroprotection and Functional Recovery after Traumatic Brain Injury.

J Neurotrauma 2020 06 10;37(11):1358-1369. Epub 2020 Feb 10.

Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.

The lack of effective therapies for moderate-to-severe traumatic brain injuries (TBIs) leaves patients with lifelong disabilities. Neural stem cells (NSCs) have demonstrated great promise for neural repair and regeneration. However, direct evidence to support their use as a cell replacement therapy for neural injuries is currently lacking. We hypothesized that NSC-derived extracellular vesicles (NSC EVs) mediate repair indirectly after TBI by enhancing neuroprotection and therapeutic efficacy of endogenous NSCs. We evaluated the short-term effects of acute intravenous injections of NSC EVs immediately following a rat TBI. Male NSC EV-treated rats demonstrated significantly reduced lesion sizes, enhanced presence of endogenous NSCs, and attenuated motor function impairments 4 weeks post-TBI, when compared with vehicle- and TBI-only male controls. Although statistically not significant, we observed a therapeutic effect of NSC EVs on brain lesion volume, nestin expression, and behavioral recovery in female subjects. Our study demonstrates the neuroprotective and functional benefits of NSC EVs for treating TBI and points to gender-dependent effects on treatment outcomes, which requires further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2019.6443DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249471PMC
June 2020

Fast axial scanning for 2-photon microscopy using liquid lens technology.

Proc SPIE Int Soc Opt Eng 2017 Mar;10070

Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.

Scanning microscopy methods require movement of the focus in Z coordinates to produce an image of a 3-dimensional volume. In a typical imaging system, the optical setup is kept fixed and either the sample or the objective is translated with a mechanical stage driven by a stepper motor or a piezoelectric element. Mechanical Z scanning is precise, but its slow response and vulnerability to mechanical vibrations and stress make it disadvantageous to image dynamic, time-varying samples such as live cell structures. An alternative method less susceptible to these problems is to change the focal plane using conjugate optics. Deformable mirrors, acoustooptics, and electrically tunable lenses have been experimented with to achieve this goal and have attained very fast and precise Z-scanning without physically moving the sample. Here, we present the use of a liquid lens for fast axial scanning. Liquid lenses have a long functional life, high degree of phase shift, and low sensitivity to mechanical stress. They work on the principle of refraction at a liquid-liquid interface. At the boundary of a polar and an apolar liquid a spherical surface is formed whose curvature can be controlled by adjusting its relative wettability using electrowetting. We characterize the effects of the lens on attainable Z displacement, beam spectral characteristics, and pulse duration as compared with mechanical scanning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1117/12.2252992DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918272PMC
March 2017
-->