Publications by authors named "Milladur Rahman"

42 Publications

Complement Component 3 Is Required for Tissue Damage, Neutrophil Infiltration, and Ensuring NET Formation in Acute Pancreatitis.

Eur Surg Res 2021 Jan 28:1-14. Epub 2021 Jan 28.

Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden,

Background: Neutrophil extracellular traps (NETs) are known to play an important role in the pathophysiology of acute pancreatitis (AP). Activation of the complement cascade has been shown to occur in AP. The aim of this study was to examine whether complement component 3 is involved in the generation of NETs in AP.

Methods: AP was induced in wild-type and C3-deficient mice by retrograde infusion of taurocholate into the pancreatic duct. Blood, lung, and pancreas tissue were collected and MPO activity was determined in lung and pancreas tissue. Histological examination of the inflamed pancreas was performed. Plasma levels of CXCL2, MMP-9, IL-6, and DNA-histone complexes as well as pancreatic levels of CXCL1 and CXCL2 were determined by use of enzyme-linked immunosorbent assay. NETs were detected in the pancreas by electron microscopy. The amount of MPO and citrullinated histone 3 in neutrophils isolated from bone marrow was examined using flow cytometry.

Results: In C3-deficient mice, challenge with taurocholate yielded much fewer NETs in the pancreatic tissue compared with wild-type controls. Taurocholate-induced blood levels of amylase, tissue injury, and neutrophil recruitment in the pancreas were markedly reduced in the mice lacking C3. Furthermore, MPO levels in the lung, and plasma levels of IL-6, MMP-9, and CXCL2 were significantly lower in the C3-deficient mice compared to wild-type mice after the induction of AP. In vitro studies revealed that neutrophils from C3-deficient mice had normal NET-forming ability and recombinant C3a was not capable of directly inducing NETs formation in the wild-type neutrophils.

Conclusion: C3 plays an important role in the pathophysiology of AP as it is necessary for the recruitment of neutrophils into the pancreas and ensuring NETs formation. Targeting C3 could hence be a potential strategy to ameliorate local damage as well as remote organ dysfunction in AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000513845DOI Listing
January 2021

Processed meat products with added plant antioxidants affect the microbiota and immune response in C57BL/6JRj mice with cyclically induced chronic inflammation.

Biomed Pharmacother 2020 Dec 28;135:111133. Epub 2020 Dec 28.

Department of Food Technology, Engineering and Nutrition, Lund University, Naturvetarvägen 12, 223 62, Lund, Sweden. Electronic address:

Epidemiological studies have found that there is a correlation between red and processed meat consumption and an increased risk of colorectal cancer. There are numerous existing hypotheses on what underlying mechanisms are causative to this correlation, but the results remain unclear. A common hypothesis is that lipid oxidation, which occurs in endogenous lipids and phospholipids in consumed food, are catalyzed by the heme iron in meat. In this study, five pre-selected plant antioxidant preparations (sea buckthorn leaves and sprouts, summer savory leaves, olive polyphenols, onion skin and lyophilized black currant leaves) were added to a meatball type prone to oxidize (pork meat, 20 % fat, 2% salt, deep-fried and after 2 weeks of storage). Pro-inflammatory markers, neutrophil infiltration and microbiota composition were studied after four months in a chronic inflammation model in C57BL6/J female mice. We found that the bacterial diversity index was affected, as well as initial immunological reactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.111133DOI Listing
December 2020

MicroRNA-340-5p inhibits colon cancer cell migration via targeting of RhoA.

Sci Rep 2020 10 9;10(1):16934. Epub 2020 Oct 9.

Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden.

Colon cancer is the third most common cancer and a significant cause of cancer-related deaths worldwide. Metastasis is the most insidious aspect of cancer progression. Convincing data suggest that microRNAs (miRs) play a key function in colon cancer biology. We examined the role of miR-340-5p in regulating RhoA expression as well as cell migration and invasion in colon cancer cells. Levels of miR-340-5p and RhoA mRNA varied inversely in serum-free and serum-grown HT-29 and AZ-97 colon cancer cells. It was found transfection with miR-340-5p not only decreased expression of RhoA mRNA and protein levels in HT-29 cells but also reduced colon cancer cell migration and invasion. Bioinformatics analysis predicted one putative binding sites at the 3'-UTR of RhoA mRNA. Targeting this binding site with a specific blocker reversed mimic miR-340-5p-induced inhibition of RhoA activation and colon cancer cell migration and invasion. These novel results suggest that miR-340-5p is an important regulator of colon cancer cell motility via targeting of RhoA and further experiments are warranted to evaluate the role of miR-340-5p in colon cancer metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-73792-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547089PMC
October 2020

A molecular map of murine lymph node blood vascular endothelium at single cell resolution.

Nat Commun 2020 07 30;11(1):3798. Epub 2020 Jul 30.

Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.

Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicroscopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17291-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393069PMC
July 2020

Extracellular cold-inducible RNA-binding protein regulates neutrophil extracellular trap formation and tissue damage in acute pancreatitis.

Lab Invest 2020 12 24;100(12):1618-1630. Epub 2020 Jul 24.

Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.

Neutrophil extracellular traps (NETs) play a key role in the development of acute pancreatitis (AP). In the present study, we studied the role of extracellular cold-inducible RNA-binding protein (eCIRP), a novel damage-associated-molecular-pattern molecule, in severe AP. C57BL/6 mice underwent retrograde infusion of taurocholate into the pancreatic duct. C23, an eCIRP inhibitor, was given 1 h prior to induction of AP. Pancreatic, lung, and blood samples were collected and levels of citrullinated histone 3, DNA-histone complexes, eCIRP, myeloperoxidase (MPO), amylase, cytokines, matrix metalloproteinase-9 (MMP-9), and CXC chemokines were quantified after 24 h. NETs were detected by electron microscopy in the pancreas and bone marrow-derived neutrophils. Amylase secretion was analyzed in isolated acinar cells. Plasma was obtained from healthy individuals and patients with mild and moderate severe or severe AP. Taurocholate infusion induced NET formation, inflammation, and tissue injury in the pancreas. Pretreatment with C23 decreased taurocholate-induced pancreatic and plasma levels of eCIRP and tissue damage in the pancreas. Blocking eCIRP reduced levels of citrullinated histone 3 and NET formation in the pancreas as well as DNA-histone complexes in the plasma. In addition, administration of C23 attenuated MPO levels in the pancreas and lung of mice exposed to taurocholate. Inhibition of eCIRP reduced pancreatic levels of CXC chemokines and plasma levels of IL-6, HMGB-1, and MMP-9 in mice with severe AP. Moreover, eCIRP was found to be bound to NETs. Coincubation with C23 reduced NET-induced amylase secretion in isolated acinar cells. Patients with severe AP had elevated plasma levels of eCIRP compared with controls. Our novel findings suggest that eCIRP is a potent regulator of NET formation in the inflamed pancreas. Moreover, these results show that targeting eCIRP with C23 inhibits inflammation and tissue damage in AP. Thus, eCIRP could serve as an effective target to attenuate pancreatic damage in patients with AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41374-020-0469-5DOI Listing
December 2020

Retraction: Neutrophil extracellular traps promote peritoneal metastasis of colon cancer cells.

Oncotarget 2020 02 11;11(6):670. Epub 2020 Feb 11.

Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 20502 Malmö, Sweden.

[This retracts the article DOI: 10.18632/oncotarget.26664.].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.27482DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021231PMC
February 2020

MiR-155 Regulates PAD4-Dependent Formation of Neutrophil Extracellular Traps.

Front Immunol 2019 1;10:2462. Epub 2019 Nov 1.

Section for Surgery, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.

Accumulating data suggest that neutrophil extracellular traps (NETs) exert a key function in several diseases. Peptidylarginine deiminase 4 (PAD4) regulates NET formation via citrullination of histones. The aim of this study was to examine the role of miR-155 in controlling PAD4-dependent generation of NETs. Bone marrow neutrophils were stimulated with PMA and MIP-2. Pre-incubation of neutrophils with translational inhibitors (cycloheximide or puromycin) markedly decreased NET formation induced by PMA or MIP-2. Neutrophil transfection with a mimic miR-155 increased PMA-induced PAD4 mRNA expression and NET formation. In contrast, transfection with an antagomiR-155 decreased induction of PAD4 mRNA and NETs in response to PMA challenge. Bioinformatical examination of PAD4 revealed a potential binding site in AU-rich elements at the 3'-UTR region. MiR-155 binding to PAD4 was examined by use of target site blockers and RNA immunoprecipitation, revealing that miR-155 regulation of PAD4 mRNA is mediated via AU-rich elements in the 3'-UTR region. In conclusion, our findings demonstrate that miR-155 positively regulates neutrophil expression of PAD4 and expulsion of extracellular traps. Thus, our novel results indicate that targeting miR-155 might be useful to inhibit exaggerated NET generation in inflammatory diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.02462DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838784PMC
November 2020

Platelet IP6K1 regulates neutrophil extracellular trap-microparticle complex formation in acute pancreatitis.

JCI Insight 2019 Oct 8. Epub 2019 Oct 8.

Platelet inositol hexakisphosphate kinase 1 (IP6K1) has been shown to control systemic inflammation. Herein, we examined if platelets and IP6K1 regulate pancreatic tissue injury via formation of NETs in experimental models of acute pancreatitis (AP) in mice. By use of electron microscopy abundant NET formation was observed in the inflamed pancreas. These NETs contained numerous microparticles (MP) expressing CD41 or Mac-1. Platelet depletion reduced deposition of NET-MP complexes in the inflamed pancreas. Circulating platelet-neutrophil aggregates (PNA) were increased and inhibition of P-selectin not only disrupted PNA formation but also reduced NETs formation in the inflamed pancreas. NETs depleted of MPs had lower capacity to provoke amylase secretion and STAT-3 phosphorylation in acinar cells. Taurocholate-induced NETs formation, inflammation and tissue damage in the pancreas were decreased in IP6K1-deficient mice. Thrombin stimulation of mixtures of wild-type platelets and neutrophils resulted in NETs formation but not when IP6K1-deficient platelets were incubated with wild-type neutrophils. Polyphosphate rescue restored thrombin-induced NET formation in mixtures of IP6K1-deficient platelets and wild-type neutrophils. Platelet IP6K1 regulates NET-MP complex formation in the pancreas of mice during induction of AP. Targeting platelet IP6K1 might useful to decrease NET-dependent pancreatic tissue inflammation and tissue injury in patients with AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.129270DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032015PMC
October 2019

c-Abl kinase regulates neutrophil extracellular trap formation, inflammation, and tissue damage in severe acute pancreatitis.

J Leukoc Biol 2019 08 12;106(2):455-466. Epub 2019 Mar 12.

Department of Clinical Science, Malmö, Section for Surgery, Skåne University Hospital, Lund University, Malmö, Sweden.

Neutrophil extracellular traps (NETs) are involved in acute pancreatitis (AP) but mechanisms controlling NET expulsion in AP are incompletely understood. Herein, we examined the role of c-Abelson (c-Abl) kinase in NET formation and tissue damage in severe AP. AP was induced by taurocholate infusion into pancreatic duct or intraperitoneal administration of l-arginine in mice. Pancreatic, lung, and blood samples were collected and levels of phosphorylated c-Abl kinase, citrullinated histone 3, DNA-histone complexes, myeloperoxidase, amylase, cytokines, and CXC chemokines were quantified. Citrullinated histone 3, reactive oxygen species (ROS), and NET formation were determined in bone marrow neutrophils. Taurocholate challenge increased phosphorylation of c-Abl kinase and levels of citrullinated histone 3 in the pancreas as well as DNA-histone complexes in the plasma. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase but also decreased levels of citrullinated histone 3 in the pancreas and DNA-histone complexes in the plasma of animals with AP. Moreover, GZD824 decreased plasma levels of amylase, IL-6, and MMP-9 as well as edema, acinar cell necrosis, hemorrhage, CXC chemokine formation, and neutrophil infiltration in the inflamed pancreas. A beneficial effect of c-Abl kinase inhibition was confirmed in l-arginine-induced pancreatitis. In vitro, inhibition of c-Abl kinase reduced TNF-α-induced formation of ROS, histone 3 citrullination, and NETs in isolated bone marrow neutrophils. Our findings demonstrate that c-Abl kinase regulates NET formation in the inflamed pancreas. In addition, inhibition of c-Abl kinase reduced pancreatic tissue inflammation, and damage in AP. Thus, targeting c-Abl kinase might be a useful way to protect the pancreas in severe AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/JLB.3A0618-222RRDOI Listing
August 2019

Neutrophil extracellular traps promote peritoneal metastasis of colon cancer cells.

Oncotarget 2019 Feb 8;10(12):1238-1249. Epub 2019 Feb 8.

Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 20502 Malmö, Sweden.

Cytoreductive surgery is the only curative option for patients with peritoneal carcinomatosis, however, intraperitoneal recurrence rate is high making new ways to prevent cancer recurrence an urgent need. Recent evidence suggests that neutrophils are involved in cancer progression. The purpose of our study was to examine the role of neutrophils in the spread of colon cancer cells in the peritoneal cavity. The number of metastatic noduli in the peritoneal cavity was quantified in mice injected with murine colon cancer cells (CT-26) intraperitoneally after surgical laparotomy and treated with a neutrophil depleting antibody or DNase I. In addition, peritoneal metastases were harvested from patients with peritoneal carcinomatosis. Scanning and transmission electron microscopy showed extensive neutrophil extracellular trap (NET) formation in peritoneal colon cancer metastases in mice and patients. Neutrophil depletion markedly reduced the number of metastases in laparotomised animals. Administration of DNase I decreased the number of metastatic nodules by 88% in laparotomised animals as well as NET-induced chemokine-dependent colon cancer cell migration and adhesion . Finally, CT-26 cancer cells were found to express the αβ integrin and inhibition of αv integrin abolished NET-induced adhesion of colon cancer cells to vitronectin. Taken together, our data show that NETs play an important role in colon cancer cell metastasis in the peritoneal cavity and regulate colon cancer cell migration and adhesion to extracellular matrix proteins. These novel findings suggest that targeting NETs might be an effective strategy to antagonize intrabdominal recurrences of colon cancer after cytoreductive surgery in patients with peritoneal carcinomatosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.26664DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383817PMC
February 2019

Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis.

J Cell Physiol 2019 07 4;234(7):11850-11860. Epub 2018 Dec 4.

Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Lund, Sweden.

Recent evidence suggests that neutrophil extracellular traps (NETs) play an important role in the development of acute pancreatitis (AP). Herein, we examined the role of peptidylarginine deiminase (PAD), which has been shown to regulate NET formation, in severe AP. AP was induced by retrograde of taurocholate infusion into pancreatic duct in C57BL/6 mice. PAD was pharmacologically inhibited using Cl-amidine, a pan-PAD inhibitor. Pancreata were collected, and histones, citrullinated histone 3, chemokines, myeloperoxidase, and NETs were quantified. Chemokines, matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and DNA-histone complexes were determined in plasma samples. Infusion of taurocholate induced formation of NETs in pancreatic tissues of mice. Pretreatment with Cl-amidine markedly reduced the NET formation in the inflamed pancreas. Moreover, inhibition of PAD decreased the levels of blood amylase as well as edema, acinar cell necrosis, hemorrhage, and neutrophil infiltration in the pancreas of animals with AP. Administration of Cl-amidine attenuated the myeloperoxidase levels in the pancreas and lung of mice exposed to taurocholate. In addition, Cl-amidine decreased pancreatic levels of CXC chemokines, plasma levels of IL-6, and MMP-9 in mice with severe AP. This study shows that Cl-amidine is a potent inhibitor of NET formation in severe AP. Also, our results suggest that PAD regulates pathological inflammation and tissue damage in the inflamed pancreas. Thus, targeting PAD might be a useful strategy to treat patients with severe AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.27874DOI Listing
July 2019

Platelet secretion of CXCL4 is Rac1-dependent and regulates neutrophil infiltration and tissue damage in septic lung damage.

Br J Pharmacol 2015 Nov 24;172(22):5347-59. Epub 2015 Oct 24.

Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden.

Background And Purpose: Platelets are potent regulators of neutrophil accumulation in septic lung damage. We hypothesized that platelet-derived CXCL4 might support pulmonary neutrophilia in a murine model of abdominal sepsis.

Experimental Approach: Polymicrobial sepsis was triggered by coecal ligation and puncture (CLP) in C57BL/6 mice. Platelet secretion of CXCL4 was studied by using confocal microscopy. Plasma and lung levels of CXCL4, CXCL1 and CXCL2 were determined by elisa. Flow cytometry was used to examine surface expression of Mac-1 on neutrophils.

Key Results: CLP increased CXCL4 levels in plasma, and platelet depletion reduced plasma levels of CXCL4 in septic animals. Rac1 inhibitor NSC23766 decreased the CLP-enhanced CXCL4 in plasma by 77%. NSC23766 also abolished PAR4 agonist-induced secretion of CXCL4 from isolated platelets. Inhibition of CXCL4 reduced CLP-evoked neutrophil recruitment, oedema formation and tissue damage in the lung. However, immunoneutralization of CXCL4 had no effect on CLP-induced expression of Mac-1 on neutrophils. Targeting CXCL4 attenuated plasma and lung levels of CXCL1 and CXCL2 in septic mice. CXCL4 had no effect on neutrophil chemotaxis in vitro, indicating it has an indirect effect on pulmonary neutrophilia. Intratracheal CXCL4 enhanced infiltration of neutrophils and formation of CXCL2 in the lung. CXCR2 antagonist SB225002 markedly reduced CXCL4-provoked neutrophil accumulation in the lung. CXCL4 caused secretion of CXCL2 from isolated alveolar macrophages.

Conclusions And Implications: Rac1 controls platelet secretion of CXCL4 and CXCL4 is a potent stimulator of neutrophil accumulation in septic lungs via generation of CXCL2 in alveolar macrophages. Platelet-derived CXCL4 plays an important role in lung inflammation and tissue damage in polymicrobial sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.13325DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341222PMC
November 2015

Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice With Severe Acute Pancreatitis.

Gastroenterology 2015 Dec 22;149(7):1920-1931.e8. Epub 2015 Aug 22.

Section of Surgery, Department of Clinical Sciences, Malmö, Sweden. Electronic address:

Background & Aims: Neutrophils are involved in the development of acute pancreatitis (AP), but it is not clear how neutrophil-induced tissue damage is regulated. In addition to secreting antimicrobial compounds, activated neutrophils eliminate invading microorganisms by expelling nuclear DNA and histones to form extracellular web-like structures called neutrophil extracellular traps (NETs). However, NETs have been reported to contribute to organ dysfunction in patients with infectious diseases. We investigated whether NETs contribute to the development of AP in mice.

Methods: AP was induced in C57BL/6 mice by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of L-arginine. Pancreata were collected and extracellular DNA was detected by Sytox green staining, levels of CXC chemokines, histones, and cytokines also were measured. Cell-free DNA was quantified in plasma samples. Signal transducer and activator of transcription 3 phosphorylation and trypsin activation were analyzed in isolated acinar cells. NETs were depleted by administration of DNase I to mice. Plasma was obtained from healthy individuals (controls) and patients with severe AP.

Results: Infusion of taurocholate induced formation of NETs in pancreatic tissues of mice and increased levels of cell-free DNA in plasma. Neutrophil depletion prevented taurocholate-induced deposition of NETs in the pancreas. Administration of DNase I to mice reduced neutrophil infiltration and tissue damage in the inflamed pancreas and lung, and decreased levels of blood amylase, macrophage inflammatory protein-2, interleukin 6, and high-mobility groups protein 1. In mice given taurocholate, DNase I administration also reduced expression of integrin α M (macrophage-1 antigen) on circulating neutrophils. Similar results occurred in mice with L-arginine-induced AP. Addition of NETs and histones to acinar cells induced formation of trypsin and activation of signal transducer and activator of transcription 3; these processes were blocked by polysialic acid. Patients with severe AP had increased plasma levels of NET components compared with controls.

Conclusions: NETs form in the pancreata of mice during the development of AP, and NET levels are increased in plasma from patients with AP, compared with controls. NETs regulate organ inflammation and injury in mice with AP, and might be targeted to reduce pancreatic tissue damage and inflammation in patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2015.08.026DOI Listing
December 2015

Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury.

J Leukoc Biol 2015 May 25;97(5):975-984. Epub 2015 Feb 25.

*Department of Clinical Sciences, Malmö, Section for Surgery, and Islet Pathophysiology, Lund University, Malmö, Sweden

Accumulating evidence suggest that platelets play an important role in regulating neutrophil recruitment in septic lung injury. Herein, we hypothesized that platelet-derived CCL5 might facilitate sepsis-induced neutrophil accumulation in the lung. Abdominal sepsis was induced by CLP in C57BL/6 mice. CLP increased plasma levels of CCL5. Platelet depletion and treatment with the Rac1 inhibitor NSC23766 markedly reduced CCL5 in the plasma of septic mice. Moreover, Rac1 inhibition completely inhibited proteasePAR4-induced secretion of CCL5 in isolated platelets. Immunoneutralization of CCL5 decreased CLP-induced neutrophil infiltration, edema formation, and tissue injury in the lung. However, inhibition of CCL5 function had no effect on CLP-induced expression of Mac-1 on neutrophils. The blocking of CCL5 decreased plasma and lung levels of CXCL1 and CXCL2 in septic animals. CCL5 had no effect on neutrophil chemotaxis in vitro, suggesting an indirect effect of CCL5 on neutrophil recruitment. Intratracheal challenge with CCL5 increased accumulation of neutrophils and formation of CXCL2 in the lung. Administration of the CXCR2 antagonist SB225002 abolished CCL5-induced pulmonary recruitment of neutrophils. Isolated alveolar macrophages expressed significant levels of the CCL5 receptors CCR1 and CCR5. In addition, CCL5 triggered significant secretion of CXCL2 from isolated alveolar macrophages. Notably, intratracheal administration of clodronate not only depleted mice of alveolar macrophages but also abolished CCL5-induced formation of CXCL2 in the lung. Taken together, our findings suggest that Rac1 regulates platelet secretion of CCL5 and that CCL5 is a potent inducer of neutrophil recruitment in septic lung injury via formation of CXCL2 in alveolar macrophages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.4A1214-603RDOI Listing
May 2015

Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis.

Am J Physiol Gastrointest Liver Physiol 2014 Nov 11;307(9):G914-21. Epub 2014 Sep 11.

Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden;

Severe acute pancreatitis (AP) is characterized by leukocyte infiltration and tissue injury. Herein, we wanted to examine the potential effects of thrombin-derived host defense peptides (TDPs) in severe AP. Pancreatitis was provoked by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of l-arginine in C57BL/6 mice. Animals were treated with the TDPs GKY20 and GKY25 or a control peptide WFF25 30 min before induction of AP. TDPs reduced blood amylase levels, neutrophil infiltration, hemorrhage, necrosis, and edema formation in the inflamed pancreas. Treatment with TDPs markedly attenuated the taurocholate-induced increase in plasma levels of CXCL2 and interleukin-6. Moreover, administration of TDPs decreased histone 3, histone 4, and myeloperoxidase levels in the pancreas in response to taurocholate challenge. Interestingly, administration of TDPs abolished neutrophil expression of Mac-1 in mice with pancreatitis. In addition, TDPs inhibited CXCL2-induced chemotaxis of isolated neutrophils in vitro. Fluorescent-labeled TDP was found to directly bind to isolated neutrophils. Finally, a beneficial effect of TDPs was confirmed in l-arginine-induced pancreatitis. Our novel results demonstrate that TDPs exert protective effects against pathological inflammation and tissue damage in AP. These findings suggest that TDPs might be useful in the management of patients with severe AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00237.2014DOI Listing
November 2014

Proinflammatory role of neutrophil extracellular traps in abdominal sepsis.

Am J Physiol Lung Cell Mol Physiol 2014 Oct 1;307(7):L586-96. Epub 2014 Aug 1.

Department of Clinical Sciences Malmö, Section for Surgery and

Excessive neutrophil activation is a major component in septic lung injury. Neutrophil-derived DNA may form extracellular traps in response to bacterial invasions. The aim of the present study was to investigate the potential role of neutrophil extracellular traps (NETs) in septic lung injury. Male C57BL/6 mice were treated with recombinant human (rh)DNAse (5 mg/kg) after cecal ligation and puncture (CLP). Extracellular DNA was stained by Sytox green, and NET formation was quantified by confocal microscopy and cell-free DNA in plasma, peritoneal cavity, and lung. Blood, peritoneal fluid, and lung tissue were harvested for analysis of neutrophil infiltration, NET levels, tissue injury, as well as CXC chemokine and cytokine formation. We observed that CLP caused increased formation of NETs in plasma, peritoneal cavity, and lung. Administration of rhDNAse not only eliminated NET formation in plasma, peritoneal cavity, and bronchoalveolar space but also reduced lung edema and tissue damage 24 h after CLP induction. Moreover, treatment with rhDNAse decreased CLP-induced formation of CXC chemokines, IL-6, and high-mobility group box 1 (HMGB1) in plasma, as well as CXC chemokines and IL-6 in the lung. In vitro, we found that neutrophil-derived NETs had the capacity to stimulate secretion of CXCL2, TNF-α, and HMGB1 from alveolar macrophages. Taken together, our findings show that NETs regulate pulmonary infiltration of neutrophils and tissue injury via formation of proinflammatory compounds in abdominal sepsis. Thus we conclude that NETs exert a proinflammatory role in septic lung injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00365.2013DOI Listing
October 2014

Rac1 regulates platelet shedding of CD40L in abdominal sepsis.

Lab Invest 2014 Sep 21;94(9):1054-63. Epub 2014 Jul 21.

Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Skåne University Hospital, Malmö, Sweden.

Matrix metalloproteinase-9 (MMP-9) regulates platelet shedding of CD40L in abdominal sepsis. However, the signaling mechanisms controlling sepsis-induced shedding of CD40L from activated platelets remain elusive. Rac1 has been reported to regulate diverse functions in platelets; we hypothesized herein that Rac1 might regulate platelet shedding of CD40L in sepsis. The specific Rac1 inhibitor NSC23766 (N6-[2-[[4-(diethylamino)-1-methylbutyl] amino]-6-methyl-4-pyrimidinyl]-2 methyl-4, 6-quinolinediamine trihydrochloride) was administered to mice undergoing cecal ligation and puncture (CLP). Levels of CD40L and MMP-9 in plasma, platelets, and neutrophils were determined by use of ELISA, western blot, and confocal microscopy. Platelet depletion abolished the CLP-induced increase in plasma levels of CD40L. Rac1 activity was significantly increased in platelets from septic animals. Administration of NSC23766 abolished the CLP-induced enhancement of soluble CD40L levels in the plasma. Moreover, Rac1 inhibition completely inhibited proteinase-activated receptor-4-induced surface mobilization and secretion of CD40L in isolated platelets. CLP significantly increased plasma levels of MMP-9 and Rac1 activity in neutrophils. Treatment with NSC23766 markedly attenuated MMP-9 levels in the plasma from septic mice. In addition, Rac1 inhibition abolished chemokine-induced secretion of MMP-9 from isolated neutrophils. Finally, platelet shedding of CD40L was significantly reduced in response to stimulation with supernatants from activated MMP-9-deficient neutrophils compared with supernatants from wild-type neutrophils, indicating a direct role of neutrophil-derived MMP-9 in regulating platelet shedding of CD40L. Our novel data suggest that sepsis-induced platelet shedding of CD40L is dependent on Rac1 signaling. Rac1 controls surface mobilization of CD40L on activated platelets and MMP-9 secretion from neutrophils. Thus, our findings indicate that targeting Rac1 signaling might be a useful way to control pathologic elevations of CD40L in the systemic circulation in abdominal sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2014.92DOI Listing
September 2014

Ras regulates alveolar macrophage formation of CXC chemokines and neutrophil activation in streptococcal M1 protein-induced lung injury.

Eur J Pharmacol 2014 Jun 1;733:45-53. Epub 2014 Apr 1.

Department of Clinical Sciences, Malmö, Section of Surgery and Experimental Infection Medicine, Skåne University Hospital, Lund University, Sweden. Electronic address:

Streptococcal toxic shock syndrome (STSS) is associated with a high mortality rate. The M1 serotype of Streptococcus pyogenes is most frequently associated with STSS. Herein, we examined the role of Ras signaling in M1 protein-induced lung injury. Male C57BL/6 mice received the Ras inhibitor (farnesylthiosalicylic acid, FTS) prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Administration of FTS reduced M1 protein-induced neutrophil recruitment, edema formation and tissue damage in the lung. M1 protein challenge increased Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Ras activity decreased M1 protein-induced expression of Mac-1 on neutrophils and secretion of CXC chemokines in the lung. Moreover, FTS abolished M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. Ras inhibition decreased chemokine-mediated neutrophil migration in vitro. Taken together, our novel findings indicate that Ras signaling is a potent regulator of CXC chemokine formation and neutrophil infiltration in the lung. Thus, inhibition of Ras activity might be a useful way to antagonize streptococcal M1 protein-triggered acute lung injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.03.029DOI Listing
June 2014

Farnesyltransferase regulates neutrophil recruitment and tissue damage in acute pancreatitis.

Pancreas 2014 Apr;43(3):427-35

From the Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden.

Objectives: The signaling mechanisms controlling organ damage in the pancreas in severe acute pancreatitis (AP) remain elusive. Herein, we examined the role of farnesyltransferase signaling in AP.

Methods: Pancreatitis was provoked by the infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a farnesyltransferase inhibitor FTI-277 (25 mg/kg) before pancreatitis induction.

Results: FTI-277 decreased the blood amylase levels, pancreatic neutrophil infiltration, hemorrhage, and edema formation in the pancreas in mice challenged with taurocholate. Farnesyltransferase inhibition reduced the myeloperoxidase levels in the pancreas and lungs in response to taurocholate infusion. However, FTI-277 had no effect on the taurocholate-provoked formation of macrophage inflammatory protein-2 in the pancreas. Interestingly, farnesyltransferase inhibition abolished the neutrophil expression of macrophage-1 antigen in mice with pancreatitis. In addition, FTI-277 decreased the taurocholate-induced activation of the rat sarcoma protein in the pancreas. An important role of farnesyltransferase was confirmed in L-arginine-induced pancreatitis.

Conclusions: These results demonstrate that farnesyltransferase signaling plays a significant role in AP by regulating neutrophil infiltration and tissue injury via the neutrophil expression of macrophage-1 antigen. Thus, our findings not only elucidate novel signaling mechanisms in pancreatitis but also suggest that farnesyltransferase might constitute a target in the management of severe AP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPA.0000000000000041DOI Listing
April 2014

Targeting Rac1 signaling inhibits streptococcal M1 protein-induced CXC chemokine formation, neutrophil infiltration and lung injury.

PLoS One 2013 12;8(8):e71080. Epub 2013 Aug 12.

Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden.

Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766) on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071080PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741375PMC
March 2014

Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis.

Platelets 2014 15;25(4):257-63. Epub 2013 Jul 15.

Department of Surgery, Lund University , Malmö , Sweden .

Abstract Platelets play an important role in abdominal sepsis and P2Y12 receptor antagonists have been reported to exert anti-inflammatory effects. Herein, we assessed the impact of platelet inhibition with the P2Y12 receptor antagonist ticagrelor on pulmonary neutrophil recruitment and tissue damage in a model of abdominal sepsis. Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were treated with ticagrelor (100 mg/kg) or vehicle prior to CLP induction. Edema formation and bronchoalveolar neutrophils as well as lung damage were quantified. Flow cytometry was used to determine expression of platelet-neutrophil aggregates, neutrophil activation and CD40L expression on platelets. CLP-induced pulmonary infiltration of neutrophils at 24 hours was reduced by 50% in ticagrelor-treated animals. Moreover, ticagrelor abolished CLP-provoked lung edema and decreased lung damage score by 41%. Notably, ticagrelor completely inhibited formation of platelet-neutrophil aggregates and markedly reduced thrombocytopenia in CLP animals. In addition, ticagrelor reduced platelet shedding of CD40L in septic mice. Our data indicate that ticagrelor can reduce CLP-induced pulmonary neutrophil recruitment and lung damage suggesting a potential role for platelet antagonists, such as ticagrelor, in the management of patients with abdominal sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/09537104.2013.809520DOI Listing
January 2015

Rac1 signaling regulates sepsis-induced pathologic inflammation in the lung via attenuation of Mac-1 expression and CXC chemokine formation.

J Surg Res 2013 Aug 15;183(2):798-807. Epub 2013 Mar 15.

Section of Surgery, Department of Clinical Sciences, Lund University, Malmö, Sweden.

Excessive neutrophil recruitment is a major feature in septic lung damage although the signaling mechanisms behind pulmonary infiltration of neutrophils in sepsis remain elusive. In the present study, we hypothesized that Rac1 might play an important role in pulmonary neutrophil accumulation and tissue injury in abdominal sepsis. Male C57BL/6 mice were treated with Rac1 inhibitor NSC23766 (5 mg/kg) before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were collected for the quantification of neutrophil recruitment and edema and CXC chemokine formation. Blood was collected for the determination of Mac-1 on neutrophils and proinflammatory compounds in plasma. Gene expression of CXC chemokines and tumor necrosis factor alpha was determined by quantitative reverse transcription-polymerase chain reaction in alveolar macrophages. Rac1 activity was increased in lungs from septic animals, and NSC23766 significantly decreased pulmonary activity of Rac1 induced by CLP. Administration of NSC23766 markedly reduced CLP-triggered neutrophil infiltration, edema formation, and tissue damage in the lung. Inhibition of Rac1 decreased CLP-induced neutrophil expression of Mac-1 and pulmonary formation of CXC chemokines. Moreover, NSC23766 abolished the sepsis-evoked elevation of messenger RNA levels of CXC chemokines and tumor necrosis factor alpha in alveolar macrophages. Rac1 inhibition decreased the CLP-induced increase in plasma levels of high mobility group protein B1 and interleukin 6, indicating a role of Rac1 in systemic inflammation. In conclusion, our results demonstrate that Rac1 signaling plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis. Thus, targeting Rac1 activity might be a useful strategy to protect the lung in abdominal sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2013.02.045DOI Listing
August 2013

Geranylgeranyl transferase regulates streptococcal M1 protein-induced CXC chemokine formation and neutrophil recruitment in the lung.

Shock 2013 Mar;39(3):293-8

Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Malmö, Sweden.

Streptococcal toxic shock syndrome is most frequently associated with Streptococcus pyogenes of the M1 serotype. Simvastatin protects against M1 protein-induced acute lung damage, although downstream mechanisms remain elusive. Herein, we hypothesized that geranylgeranylation might regulate proinflammatory effects in M1 protein-induced lung injury. Male C57BL/6 mice received the geranylgeranyl transferase inhibitor, GGTI-2133, before M1 protein injection. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema, and CXC chemokine formation. Mac-1 expression on neutrophils was quantified by use of flow cytometry. Quantitative reverse transcriptase-polymerase chain reaction was used to determine gene expression of CXC chemokines in alveolar macrophages. GGTI-2133 reduced M1 protein-provoked infiltration of neutrophils, edema, and tissue injury in the lung. Inhibition of geranylgeranyl transferase had no effect on M1 protein-evoked upregulation of Mac-1 on neutrophils. However, geranylgeranyl transferase inhibition completely inhibited pulmonary formation of CXC chemokines in mice exposed to M1 protein. Notably, GGTI-2133 abolished M1 protein-induced gene expression of CXC chemokines in alveolar macrophages. These novel findings indicate that geranylgeranyl transferase is an important regulator of neutrophil recruitment and CXC chemokine production in the lung. Thus, targeting geranylgeranyl transferase might be a potent way to ameliorate streptococcal M1 protein-triggered acute lung injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0b013e3182844523DOI Listing
March 2013

Distinct patterns of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation.

Am J Physiol Lung Cell Mol Physiol 2013 Feb 28;304(4):L298-305. Epub 2012 Dec 28.

Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Malmö, Sweden.

The mechanisms of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation remain elusive. Male C57BL/6 mice received lipopolysaccharide (LPS) intrapulmonary (intratracheally, it) or systemically (intravenously, iv) for 1-18 h. Leukocyte responses in lung were analyzed by use of intravital fluorescence microscopy. Plasma and lung levels of CXC chemokines as well as Mac-1 and F-actin expression in leukocytes and bronchoalveolar leukocytes were quantified. Venular leukocyte rolling was markedly increased in response to local LPS but only marginally after systemic LPS. Leukocyte adhesion in venules was enhanced in both groups although adhesion was higher in mice receiving LPS intratracheally compared with LPS intravenously. Systemic LPS caused more leukocytes trapping in capillaries compared with local LPS. The ratio of adherent leukocytes in venules compared with capillaries was higher in response to local LPS, suggesting that leukocytes were more prone to accumulate in venules in local inflammation and in capillaries in systemic inflammation. Systemic LPS triggered higher F-actin formation and Mac-1 expression in leukocytes compared with local LPS. Local and systemic LPS caused similar increases in CXC chemokines in the lung whereas intravenous endotoxin provoked higher levels of CXC chemokines in the circulation. Interestingly, intratracheal LPS increased recruitment of leukocytes in the alveolar space whereas intravenous LPS was ineffective in promoting leukocyte accumulation in the bronchoalveolar space. In conclusion, our data demonstrate that pulmonary microvascular recruitment of leukocytes differs in local and systemic inflammation, which might be related to premature activation and stiffening of circulating leukocytes in endotoxemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00246.2012DOI Listing
February 2013

Geranylgeranyl transferase regulates CXC chemokine formation in alveolar macrophages and neutrophil recruitment in septic lung injury.

Am J Physiol Lung Cell Mol Physiol 2013 Feb 14;304(4):L221-9. Epub 2012 Dec 14.

Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden.

Overwhelming accumulation of neutrophils is a significant component in septic lung damage, although the signaling mechanisms behind neutrophil infiltration in the lung remain elusive. In the present study, we hypothesized that geranylgeranylation might regulate the inflammatory response in abdominal sepsis. Male C57BL/6 mice received the geranylgeranyl transferase inhibitor, GGTI-2133, before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets. Gene expression of CXC chemokines, tumor necrosis factor-α (TNF-α), and CCL2 chemokine was determined by quantitative RT-PCR in isolated alveolar macrophages. Administration of GGTI-2133 markedly decreased CLP-induced infiltration of neutrophils, edema, and tissue injury in the lung. CLP triggered clear-cut upregulation of Mac-1 on neutrophils. Inhibition of geranylgeranyl transferase reduced CLP-evoked upregulation of Mac-1 on neutrophils in vivo but had no effect on chemokine-induced expression of Mac-1 on isolated neutrophils in vitro. Notably, GGTI-2133 abolished CLP-induced formation of CXC chemokines, TNF-α, and CCL2 in alveolar macrophages in the lung. Geranylgeranyl transferase inhibition had no effect on sepsis-induced platelet shedding of CD40L. In addition, inhibition of geranylgeranyl transferase markedly decreased CXC chemokine-triggered neutrophil chemotaxis in vitro. Taken together, our findings suggest that geranylgeranyl transferase is an important regulator of CXC chemokine production and neutrophil recruitment in the lung. We conclude that inhibition of geranylgeranyl transferase might be a potent way to attenuate acute lung injury in abdominal sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00199.2012DOI Listing
February 2013

Radicicol, an Hsp90 inhibitor, inhibits intestinal inflammation and leakage in abdominal sepsis.

J Surg Res 2013 Jun 1;182(2):312-8. Epub 2012 Nov 1.

Department of Heptobiliary Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China.

Background: Intestinal injury is a key feature in sepsis. Inhibitors of heat shock protein 90 (Hsp90) have been shown to exert protective effects in models of inflammation. Herein, we hypothesized that Hsp90 might regulate intestinal inflammation and leakage in abdominal sepsis.

Materials And Methods: Male C57BL/6 mice were pretreated with radicicol (60 mg/kg), which is a specific inhibitor of Hsp90, prior to cecal ligation and puncture (CLP). Intravital fluorescence microscopy was used to quantify leukocyte-endothelium interactions in the colonic microcirculation 6 h after CLP. Colonic tissue was harvested to determine levels of myeloperoxidase, tumor necrosis factor-α and CXC chemokines. Intestinal injury was examined by histology. Intestinal barrier function was quantified by leakage of fluorescein isothiocyanate-dextran from the vascular system out into the abdominal cavity after intravenous injection.

Results: We found that radicicol significantly decreased CLP-induced leukocyte rolling and adhesion in colonic venules. Inhibition of Hsp90 reduced colonic levels of myeloperoxidase by 24% in septic animals. Moreover, radicicol significantly decreased CLP-provoked formation of CXC chemokines but had no significant effect on tumor necrosis factor-α levels in the colon. Notably, Hsp90 inhibition significantly attenuated intestinal tissue injury evoked by CLP. Lastly, it was found that radicicol reduced sepsis-induced intestinal leakage by 43%.

Conclusion: Our novel findings suggest that targeting Hsp90 protects against intestinal inflammation and leakage and might be a useful strategy to ameliorate intestinal failure in polymicrobial sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2012.10.038DOI Listing
June 2013

Simvastatin protects against T cell immune dysfunction in abdominal sepsis.

Shock 2012 Nov;38(5):524-31

Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden.

Sepsis-triggered immune paralysis including T-cell dysfunction increases susceptibility to infections. Statins exert beneficial effects in patients with sepsis, although the mechanisms remain elusive. Herein, we hypothesized that simvastatin may attenuate T-cell dysfunction in abdominal sepsis. Male C57BL/6 mice were pretreated with simvastatin (10 mg/kg) before cecal ligation and puncture (CLP). Spleen CD4 T-cell apoptosis, proliferation, and regulatory T cells (CD4CD25Foxp3) were quantified by use of flow cytometry. Formation of interferon γ (IFN-γ) and interleukin 4 (IL-4) in the spleen and plasma levels of high-mobility box group 1 (HMBG1) and IL-6 were determined using enzyme-linked immunosorbent assay. Cecal ligation and puncture caused a clear-cut increase in apoptosis and decrease in proliferation in splenic CD4 T cells. It was found that simvastatin markedly reduced apoptosis and improved proliferation in CD4 T cells in septic mice. Moreover, CLP-induced formation of regulatory T cells in the spleen was abolished in simvastatin-treated animals. Cecal ligation and puncture greatly decreased the levels of IFN-γ and IL-4 in the spleen. Simvastatin completely reversed this sepsis-mediated inhibition of IFN-γ and IL-4 formation in the spleen. We observed that CLP increased plasma levels of HMBG1 by 25-fold and IL-6 by 99,595-fold. Notably, treatment with simvastatin abolished this CLP-evoked increase in HMBG1 and IL-6 levels in the plasma, suggesting that simvastatin is a potent inhibitor of systemic inflammation in sepsis. Lastly, it was found that simvastatin reduced CLP-induced bacteremia. In conclusion, these novel findings suggest that simvastatin is a powerful regulator of T-cell immune dysfunction in abdominal sepsis. Thus, these protective effects of simvastatin on T-cell functions help to explain the protective effect of statins in patients with sepsis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0b013e31826fb073DOI Listing
November 2012

Streptococcal m1 protein triggers farnesyltransferase-dependent formation of CXC chemokines in alveolar macrophages and neutrophil infiltration of the lungs.

Infect Immun 2012 Nov 4;80(11):3952-9. Epub 2012 Sep 4.

Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden.

The M1 serotype of Streptococcus pyogenes plays an important role in streptococcal toxic shock syndrome. Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been shown to inhibit streptococcal M1 protein-induced acute lung damage, although downstream mechanisms remain elusive. Protein isoprenylation, such as farnesylation and geranylgeranylation, has been suggested to regulate anti-inflammatory effects exerted by statins. Here, we examined the effect of a farnesyltransferase inhibitor (FTI-277) on M1 protein-triggered lung inflammation. Male C57BL/6 mice were treated with FTI-277 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema, and CXC chemokine formation. Flow cytometry was used to determine Mac-1 expression on neutrophils. The gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative reverse transcription (RT)-PCR. We found that the administration of FTI-277 markedly decreased M1 protein-induced accumulation of neutrophils, edema formation, and tissue damage in the lung. Notably, inhibition of farnesyltransferase abolished M1 protein-evoked production of CXC chemokines in the lung and gene expression of CXC chemokines in alveolar macrophages. Moreover, FTI-277 completely inhibited chemokine-induced neutrophil migration in vitro. However, farnesyltransferase inhibition had no effect on M1 protein-induced expression of Mac-1 on neutrophils. Our findings suggest that farnesyltransferase is a potent regulator of CXC chemokine formation in alveolar macrophages and that inhibition of farnesyltransferase not only reduces neutrophil recruitment but also attenuates acute lung injury provoked by streptococcal M1 protein. We conclude that farnesyltransferase activity is a potential target in order to attenuate acute lung damage in streptococcal infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.00696-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486054PMC
November 2012