Publications by authors named "Milena B P Soares"

104 Publications

Obtainment of Macrophages from Human Monocytes to Assess Leishmania braziliensis Infection Rate and Innate Host Immune Response.

J Vis Exp 2021 Aug 7(174). Epub 2021 Aug 7.

Oswaldo Cruz Foundation, Gonçalo Moniz Institute; Federal University of Bahia;

Macrophages are multifunctional cells essential to the immune system function, and the primary host cell in Leishmania braziliensis (Lb) infection. These cells are specialized in microorganism recognition and phagocytosis, but also activate other immune cells and present antigens, as well as promote inflammation and tissue repair. Here, we describe a protocol to obtain mononuclear cells from peripheral blood (PBMC) of healthy donors to separate monocytes that then differentiate into macrophages. These cells can then be infected in vitro at different Lb concentrations to evaluate the ability to control infection, as well as evaluate host cell immune response, which can be measured by several methods. PBMCs were first isolated by centrifuging with Ficoll-Hypaque gradient and then plated to allow monocytes to adhere to culture plates; non-adherent cells were removed by washing. Next, adherent cells were cultured with macrophage-colony stimulating factor (M-CSF) for 7 days to induce macrophage differentiation. We suggest plating 2 x 10 cells per well on 24-well plates in order to obtain 2 x 10 macrophages. Fully differentiated macrophages can then be infected with Lb for 4 or 24 hours. This protocol results in a significant percentage of infected cells, which can be assessed by optical or fluorescence microscopy. In addition to infection index, parasite load can be measured by counting the numbers of parasites inside each cell. Further molecular and functional assays can also be performed in culture supernatants or within the macrophages themselves, which allows this protocol to be applied in a variety of contexts and also adapted to other intracellular parasite species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/62555DOI Listing
August 2021

Tingenone and 22-hydroxytingenone target oxidative stress through downregulation of thioredoxin, leading to DNA double-strand break and JNK/p38-mediated apoptosis in acute myeloid leukemia HL-60 cells.

Biomed Pharmacother 2021 Aug 16;142:112034. Epub 2021 Aug 16.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil. Electronic address:

Acute myeloid leukemia (AML) is the most lethal form of leukemia. Standard anti-AML treatment remains almost unchanged for decades. Tingenone (TG) and 22-hydroxytingenone (22-HTG) are quinonemethide triterpenes found in the Amazonian plant Salacia impressifolia (Celastraceae), with cytotoxic properties in different histological types of cancer cells. In the present work, we investigated the anti-AML action mechanism of TG and 22-HTG in the AML HL-60 cell line. Both compounds exhibited potent cytotoxicity in a panel of cancer cell lines. Mechanistic studies found that TG and 22-HTG reduced cell growth and caused the externalization of phosphatidylserine, the fragmentation of internucleosomal DNA and the loss of mitochondrial transmembrane potential in HL-60 cells. In addition, pre-incubation with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, prevented TG- and 22-HTG-induced apoptosis, indicating cell death by apoptosis via a caspase-dependent pathway. The analysis of the RNA transcripts of several genes indicated the interruption of the cellular antioxidant system, including the downregulation of thioredoxin, as a target for TG and 22-HTG. The application of N-acetyl-cysteine, an antioxidant, completely prevented apoptosis induced by TG and 22-HTG, indicating activation of the apoptosis pathway mediated by oxidative stress. Moreover, TG and 22-HTG induced DNA double-strand break and phosphorylation of JNK2 (T183/Y185) and p38α (T180/Y182), and co-incubation with SP 600125 (JNK/SAPK inhibitor) and PD 169316 (p38 MAPK inhibitor) partially prevented apoptosis induced by TG and 22-HTG. Together, these data indicate that TG and 22-HTG are new candidate for anti-AML therapy targeting thioredoxin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.112034DOI Listing
August 2021

Benzylated Dihydroflavones and Isoquinoline-Derived Alkaloids from the Bark of (Annonaceae) and Their Cytotoxicities.

Molecules 2021 Jun 18;26(12). Epub 2021 Jun 18.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil.

R. E. Fries popularly known as "envira", is a species of the Annonaceae family endemic to Brazil. In our ongoing search for bioactive compounds from Annonaceae Amazon plants, the bark of was investigated by classical chromatography techniques that yielded thirteen compounds (alkaloids and flavonoids) described for the first time in as well as in the genus . The structure of these isolated compounds were established by extensive analysis using 1D/2D-NMR spectroscopy in combination with MS. The isolated alkaloids were identified as belonging to the subclasses: simple isoquinoline, thalifoline (); aporphine, anonaine (); oxoaporphine, liriodenine (); benzyltetrahydroisoquinolines, ()-(+)-reticuline (); dehydro-oxonorreticuline (3,4-dihydro-7-hydroxy-6-methoxy-1-isoquinolinyl)(3-hydroxy-4-methoxyphenyl)-methanone) (); (+)-1,2-reticuline -oxide (); and (+)-1,2-reticuline -oxide (); tetrahydroprotoberberine, coreximine (); and pavine, bisnorargemonine (). While the flavonoids belong to the benzylated dihydroflavones, isochamanetin (), dichamanetin (), and a mixture of uvarinol () and isouvarinol (). Compound is described for the first time in the literature as a natural product. The cytotoxic activity of the main isolated compounds was evaluated against cancer and non-cancerous cell lines. Among the tested compounds, the most promising results were found for the benzylated dihydroflavones dichamanetin (), and the mixture of uvarinol () and isouvarinol (), which presented moderate cytotoxic activity against the tested cancer cell lines (<20.0 µg·mL) and low cytotoxicity against the non-cancerous cell line MRC-5 (>25.0 µg·mL). Dichamanetin () showed cytotoxic activity against HL-60 and HCT116 with IC values of 15.78 µg·mL (33.70 µmol·L) and 18.99 µg·mL (40.56 µmol·L), respectively while the mixture of uvarinol () and isouvarinol () demonstrated cytotoxic activity against HL-60, with an IC value of 9.74 µg·mL, and HCT116, with an IC value of 17.31 µg·mL. These cytotoxic activities can be attributed to the presence of one or more hydroxybenzyl groups present in these molecules as well as the position in which these groups are linked. The cytotoxic activities of reticuline, anonaine and liriodenine have been previously established, with liriodenine being the most potent compound.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26123714DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235387PMC
June 2021

A new synthetic antitumor naphthoquinone induces ROS-mediated apoptosis with activation of the JNK and p38 signaling pathways.

Chem Biol Interact 2021 Jul 30;343:109444. Epub 2021 Apr 30.

Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Amazonas, 69077-000, Brazil. Electronic address:

Quinones are plant-derived secondary metabolites that present diverse pharmacological properties, including antibacterial, antifungal, antiviral, anti-inflammatory, antipyretic and anticancer activities. In the present study, we evaluated the cytotoxic effect of a new naphthoquinone 6b,7-dihydro-5H-cyclopenta [b]naphtho [2,1-d]furan-5,6 (9aH)-dione) (CNFD) in different tumor cell lines. CNFD displayed cytotoxic activity against different tumor cell lines, especially in MCF-7 human breast adenocarcinoma cells, which showed IC values of 3.06 and 0.98 μM for 24 and 48 h incubation, respectively. In wound-healing migration assays, CNFD promoted inhibition of cell migration. We have found typical hallmarks of apoptosis, such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of caspases-9 and-3 activation, increase of internucleosomal DNA fragmentation without affecting the cell membrane permeabilization, increase of ROS production, and loss of mitochondrial membrane potential induced by CNFD. Moreover, gene expression experiments indicated that CNFD increased the expression of the genes CDKN1A, FOS, MAX, and RAC1 and decreased the levels of mRNA transcripts of several genes, including CCND1, CDK2, SOS1, RHOA, GRB2, EGFR and KRAS. The CNFD treatment of MCF-7 cells induced the phosphorylation of c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) and inactivation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In a study using melanoma cells in a murine model in vivo, CNFD induced a potent anti-tumor activity. Herein, we describe, for the first time, the cytotoxicity and anti-tumor activity of CNFD and sequential mechanisms of apoptosis in MCF-7 cells. CNFD seems to be a promising candidate for anti-tumor therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2021.109444DOI Listing
July 2021

Essential Oil from Bark of Aniba parviflora (Meisn.) Mez (Lauraceae) Reduces HepG2 Cell Proliferation and Inhibits Tumor Development in a Xenograft Model.

Chem Biodivers 2021 Mar 15;18(3):e2000938. Epub 2021 Feb 15.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or.

Aniba parviflora (Meisn.) Mez (Lauraceae) is an aromatic plant of the Amazon rainforest, which has a tremendous commercial value in the perfumery industry; it is popularly used as flavoring sachets and aromatic baths. In Brazilian folk medicine, A. parviflora is used to treat victims of snakebites. Herein, we analyzed the chemical composition of A. parviflora bark essential oil (EO) and its effect on the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. EO was obtained by hydrodistillation and characterized by GC-MS and GC-FID. The main constituents of EO were linalool (16.3±3.15), α-humulene (14.5±2.41 %), δ-cadinene (10.2±1.09 %), α-copaene (9.51±1.12 %) and germacrene B (7.58±2.15 %). Initially, EO's cytotoxic effect was evaluated against five cancer cell lines (HepG2, MCF-7, HCT116, HL-60 and B16-F10) and one non-cancerous one (MRC-5), using the Alamar blue method after 72 h of treatment. The calculated IC values were 9.05, 22.04, >50, 15.36, 17.57, and 30.46 μg/mL, respectively. The best selectivity was for HepG2 cells with a selective index of 3.4. DNA Fragmentation and cell cycle distribution were quantified in HepG2 cells by flow cytometry after a treatment period of 24 and 48 h. The effect of EO on tumor development in vivo was evaluated in a xenograft model using C.B-17 SCID mice engrafted with HepG2 cells. In vivo tumor growth inhibition of HepG2 xenograft at the doses of 40 and 80 mg/kg were 12.1 and 62.4 %, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202000938DOI Listing
March 2021

Reestablishment of Redox Homeostasis in the Nociceptive Primary Afferent as a Mechanism of Antinociception Promoted by Mesenchymal Stem/Stromal Cells in Oxaliplatin-Induced Chronic Peripheral Neuropathy.

Stem Cells Int 2021 6;2021:8815206. Epub 2021 Jan 6.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 40296-710, Brazil.

Painful neuropathy is a common adverse effect of oxaliplatin (OXL), a platinum-derivative chemotherapeutic agent. Oxidative stress and mitochondrial dysfunction are key factors contributing to the development of OXL-induced peripheral neuropathy (OIPN). Based on the antioxidant and antinociceptive properties of mesenchymal stem/stromal cells (MSC), the present study tested the hypothesis that MSC induce antinociceptive effects during OIPN by promoting regulation of redox environment and mitochondrial homeostasis in the nociceptive primary afferents. C57Bl/6 mice submitted to the OXL-chronic neuropathy induction protocol by repeated intravenous administration of OXL (1 mg/kg) were evaluated to determine the paw mechanical and thermal nociceptive thresholds using the von Frey filaments and cold plate tests, respectively. Two weeks after the neuropathy induction, mice were treated with bone marrow-derived MSC (1 × 10), vehicle, or gabapentin (GBP, 70 mg/kg). Four weeks later, mitochondrial morphology, gene expression profile, and oxidative stress markers in the sciatic nerve and dorsal root ganglia (DRG) were evaluated by transmission electron microscopy, RT-qPCR, and biochemical assays, respectively. OXL-treated mice presented behavioral signs of sensory neuropathy, such as mechanical allodynia and thermal hyperalgesia. The behavioral painful neuropathy was completely reverted by a single administration of MSC, while the daily treatment with GBP induced only a short-lived antinociceptive effect. The ultrastructural analysis of the sciatic nerve and DRG of OIPN mice revealed a high proportion of atypical mitochondria in both myelinated and unmyelinated fibers. Importantly, this mitochondrial atypia was strongly reduced in MSC-treated neuropathic mice. Moreover, MSC-treated neuropathic mice showed upregulation of and mRNA in the sciatic nerve and DRG. In line with this result, MSC reduced markers of nitrosative stress and lipid peroxidation in the sciatic nerve and DRG from OIPN mice. Our data suggest that the reestablishment of redox homeostasis in the nociceptive primary afferents is a mechanism by which MSC transplantation reverts the OXL-induced chronic painful neuropathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2021/8815206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808808PMC
January 2021

Betulinic Acid Exerts Cytoprotective Activity on Zika Virus-Infected Neural Progenitor Cells.

Front Cell Infect Microbiol 2020 5;10:558324. Epub 2020 Nov 5.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.

Zika virus (ZIKV), a member of the Flaviviridae family, was brought into the spotlight due to its widespread and increased pathogenicity, including Guillain-Barré syndrome and microcephaly. Neural progenitor cells (NPCs), which are multipotent cells capable of differentiating into the major neural phenotypes, are very susceptible to ZIKV infection. Given the complications of ZIKV infection and potential harm to public health, effective treatment options are urgently needed. Betulinic acid (BA), an abundant terpenoid of the lupane group, displays several biological activities, including neuroprotective effects. Here we demonstrate that Sox2 NPCs, which are highly susceptible to ZIKV when compared to their neuronal counterparts, are protected against ZIKV-induced cell death when treated with BA. Similarly, the population of Sox2 and Casp3 NPCs found in ZIKV-infected cerebral organoids was significantly higher in the presence of BA than in untreated controls. Moreover, well-preserved structures were found in BA-treated organoids in contrast to ZIKV-infected controls. Bioinformatics analysis indicated Akt pathway activation by BA treatment. This was confirmed by phosphorylated Akt analysis, both in BA-treated NPCs and brain organoids, as shown by immunoblotting and immunofluorescence analyses, respectively. Taken together, these data suggest a neuroprotective role of BA in ZIKV-infected NPCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcimb.2020.558324DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674920PMC
June 2021

Cardiac effect induced by Crotalus durissus cascavella venom: Morphofunctional evidence and mechanism of action.

Toxicol Lett 2021 Feb 22;337:121-133. Epub 2020 Nov 22.

Department of Bioregulation, Federal University of Bahia, Salvador, BA, 40110-902, Brazil.

Envenoming, resulting from snake bites, is a global public health problem. The present study was undertaken to investigate the influence of Crotalus durissus cascavella (Cdcas) venom on cardiac activity and the mechanisms of action underlying its effect. To investigate the inotropic and chronotropic effects induced by Cdcas, studies were performed on the left and right atria. A series of tests were conducted to investigate whether the negative inotropic effect, induced by Cdcas, was related to cardiac damage. Cdcas venom (0.1-30 μg/mL) elicited a significant negative inotropic effect. The addition of Cdcas crude venom (7.5, 15 and 30 μg/mL) did not induce significant alterations in cell proliferation, nor in the enzymatic activity of total-CK and CKMB. Ultrastructural evaluation demonstrated that cardiac cells from isoproterenol and Cdcas groups revealed discreet swelling and displaced intermyofibrillar mitochondria with disorganization of the cristae. No change was observed in cardiac electrical activity in perfused isolated rat hearts with Cdcas. In addition, Cdcas reduced contractility in isolated cardiomyocytes from the rat left ventricle. The negative inotropic effect of Cdcas was reduced by l-NAME (100 μM), PTIO (100 μM), ODQ (10 μM) and KT5823 (1 μM), suggesting the participation of NO/cGMP/PKG pathway due to Cdcas. In non-anesthetized rats, Cdcas induced hypotension followed by bradycardia, the latter was also observed by ECG (anesthetized animals). Our results suggest that the negative inotropic effect induced by Cdcas venom is unrelated to cardiac toxicity, at least, at the concentrations tested; and occurs through of NO/cGMP/PKG pathway, likely leading to hypotension and bradycardia when administered in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2020.11.019DOI Listing
February 2021

Production of Highly Active Antiparasitic Compounds from the Controlled Halogenation of the Crude Plant Extract.

J Nat Prod 2020 09 9;83(9):2631-2640. Epub 2020 Sep 9.

School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland.

Direct halogenation of phenolic compounds present in the CHCl extract of the roots of was investigated to enhance chemodiversity. The approach is based on eco-friendly reactions using NaBr, NaI, and NaCl in aqueous media to generate multiple "unnatural" halogenated natural products from crude extracts. The halogenation reactions, monitored by UHPLC-PDA-ELSD-MS, were optimized to generate mono-, di-, or trihalogenated derivatives. To isolate these compounds, the reactions were scaled up and the halogenated analogues were isolated by semipreparative HPLC-UV and fully characterized by NMR and HR-MS data. All of the original 16 halogenated derivatives were evaluated for their antiparasitic activities against the parasites and . Compounds presenting selective antiparasitic activities against one or both parasites with IC values comparable to the reference were identified.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.0c00433DOI Listing
September 2020

In vitro and in vivo inhibition of HCT116 cells by essential oils from bark and leaves of Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae).

J Ethnopharmacol 2020 Nov 27;262:113166. Epub 2020 Jul 27.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil. Electronic address:

Ethnopharmacological Relevance: Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae), popularly known in Brazil as "mucuíba", "ucuúba", "ucuúba-branca" or "ucuúba do igapó", is a medicinal plant used to treat a variety of diseases, including infections, inflammatory processes and cancer.

Aim Of The Study: In the present work, we investigated the chemical constituents and the in vitro and in vivo inhibition of human colon carcinoma HCT116 cells by essential oils obtained from the bark (EOB) and leaves (EOL) of V. surinamensis.

Materials And Methods: EOB and EOL were obtained by hydrodistillation and analyzed via gas chromatography with flame ionization detection and gas chromatography coupled to mass spectrometry. In vitro cytotoxic activity was determined in cultured cancer cells HCT116, HepG2, HL-60, B16-F10 and MCF-7 and in a non-cancerous cell line MRC-5 by the Alamar blue assay after 72 h of treatment. Annexin V/propidium iodide staining, mitochondrial transmembrane potential and cell cycle distribution were evaluated by flow cytometry in HCT116 cells treated with essential oils after 24 and 48 h of treatment. The cells were also stained with May-Grunwald-Giemsa to analyze cell morphology. In vivo antitumor activity was evaluated in C.B-17 SCID mice with HCT116 cells.

Results: The main constituents in EOB were aristolene (28.0 ± 3.1%), α-gurjunene (15.1 ± 2.4%), valencene (14.1 ± 1.9%), germacrene D (7.5 ± 0.9%), δ-guaiene (6.8 ± 1.0%) and β-elemene (5.4 ± 0.6%). On the other hand, EOL displayed α-farnesene (14.5 ± 1.5%), β-elemene (9.6 ± 2.3%), bicyclogermacrene (8.1 ± 2.0%), germacrene D (7.4 ± 0.7%) and α-cubebene (5.6 ± 1.1%) as main constituents. EOB showed IC values for cancer cells ranging from 9.41 to 29.52 μg/mL for HCT116 and B16-F10, while EOL showed IC values for cancer cells ranging from 7.07 to 26.70 μg/mL for HepG2 and HCT116, respectively. The IC value for a non-cancerous MRC-5 cell was 34.7 and 38.93 μg/mL for EOB and EOL, respectively. Both oils induced apoptotic-like cell death in HCT116 cells, as observed by the morphological characteristics of apoptosis, externalization of phosphatidylserine, mitochondrial depolarization and fragmentation of internucleosomal DNA. At a dose of 40 mg/kg, tumor mass inhibition rates were 57.9 and 44.8% in animals treated with EOB and EOL, respectively.

Conclusions: These data indicate V. surinamensis as possible herbal medicine in the treatment of colon cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2020.113166DOI Listing
November 2020

Bergenin Reduces Experimental Painful Diabetic Neuropathy by Restoring Redox and Immune Homeostasis in the Nervous System.

Int J Mol Sci 2020 Jul 9;21(14). Epub 2020 Jul 9.

Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil.

Diabetic neuropathy is a frequent complication of diabetes. Symptoms include neuropathic pain and sensory alterations-no effective treatments are currently available. This work characterized the therapeutic effect of bergenin in a mouse (C57/BL6) model of streptozotocin-induced painful diabetic neuropathy. Nociceptive thresholds were assessed by the von Frey test. Cytokines, antioxidant genes, and oxidative stress markers were measured in nervous tissues by ELISA, RT-qPCR, and biochemical analyses. Single (3.125-25 mg/kg) or multiple (25 mg/kg; twice a day for 14 days) treatments with bergenin reduced the behavioral signs of diabetic neuropathy in mice. Bergenin reduced both nitric oxide (NO) production in vitro and malondialdehyde (MDA)/nitrite amounts in vivo. These antioxidant properties can be attributed to the modulation of gene expression by the downregulation of inducible nitric oxide synthase (iNOS) and upregulation of glutathione peroxidase and Nrf2 in the nervous system. Bergenin also modulated the pro- and anti-inflammatory cytokines production in neuropathic mice. The long-lasting antinociceptive effect induced by bergenin in neuropathic mice, was associated with a shift of the cytokine balance toward anti-inflammatory predominance and upregulation of antioxidant pathways, favoring the reestablishment of redox and immune homeostasis in the nervous system. These results point to the therapeutic potential of bergenin in the treatment of painful diabetic neuropathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21144850DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7420298PMC
July 2020

Essential oil from leaves of Conobea scoparioides (Cham. & Schltdl.) Benth. (Plantaginaceae) causes cell death in HepG2 cells and inhibits tumor development in a xenograft model.

Biomed Pharmacother 2020 Sep 20;129:110402. Epub 2020 Jun 20.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil. Electronic address:

Conobea scoparioides (Cham. & Schltdl.) Benth. (syn. Sphaerotheca scoparioides Cham. & Schldtl.) (Plantaginaceae), popularly known as "pataqueira", "vassourinha-do-brejo" and/or "hierba-de-sapo", is a popular medicinal plant used to treat leishmaniasis, pain and beriberi. In addition, inhibition of cell adhesion, antioxidant, cytotoxic and leishmanicidal activities of compounds or fractions of C. scoparioides have been reported. In the present work, chemical constituents and in vitro and in vivo anti-liver cancer potential of essential oil (EO) from leaves of C. scoparioides were investigated using human hepatocellular carcinoma HepG2 cells as a cell model. EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC-MS and GC-FID. The in vitro cytotoxic effect was evaluated on three human cancer cell lines (MCF-7, HepG2 and HCT116) and one human non-cancerous cell line (MRC-5) using the Alamar blue assay. Phosphatidylserine externalization and cell cycle distribution were quantified in HepG2 cells by flow cytometry after 48 h incubation. The effectiveness of EO in anti-liver cancer model was studied with HepG2 cells grafted on C.B. 17 SCID mice. The main constituents of EO were thymol methyl ether (62 %), thymol (16 %) and α-phellandrene (14 %). EO displayed an in vitro cytotoxic effect against all human cancer cell lines and caused externalization of phosphatidylserine and DNA fragmentation in HepG2 cells, suggesting induction of apoptotic-like cell death. In vivo tumor mass inhibition of 36.7 and 55.8 % was observed for treatment with EO at doses of 40 and 80 mg/kg, respectively. These results indicate in vitro and in vivo anti-liver cancer potential of EO from leaves of C. scoparioides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110402DOI Listing
September 2020

L. (Cyperaceae) Rhizome Essential Oil Causes Cell Cycle Arrest in the G/M Phase and Cell Death in HepG2 Cells and Inhibits the Development of Tumors in a Xenograft Model.

Molecules 2020 Jun 9;25(11). Epub 2020 Jun 9.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Bahia, Salvador 40296-710, Brazil.

L. (Cyperaceae), popularly known in Brazil as "priprioca" or "piriprioca", is a tropical and subtropical plant used in popular medical practices to treat many diseases, including cancer. In this study, rhizome essential oil (EO), collected from the Brazilian Amazon rainforest, was addressed in relation to its chemical composition, induction of cell death in vitro and inhibition of tumor development in vivo, using human hepatocellular carcinoma HepG2 cells as a cell model. EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID), respectively. The cytotoxic activity of EO was examined against five cancer cell lines (HepG2, HCT116, MCF-7, HL-60 and B16-F10) and one non-cancerous one (MRC-5) using the Alamar blue assay. Cell cycle distribution and cell death were investigated using flow cytometry in HepG2 cells treated with EO after 24, 48 and 72 h of incubation. The cells were also stained with May-Grunwald-Giemsa to analyze the morphological changes. The anti-liver-cancer activity of EO in vivo was evaluated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The main representative substances of this EO sample were muskatone (11.6%), cyclocolorenone (10.3%), α-pinene (8.26%), pogostol (6.36%), α-copaene (4.83%) and caryophyllene oxide (4.82%). EO showed IC values for cancer cell lines ranging from 28.5 µg/mL for HepG2 to >50 µg/mL for HCT116, and an IC value for non-cancerous of 46.0 µg/mL (MRC-5), showing selectivity indices below 2-fold for all cancer cells tested. HepG2 cells treated with EO showed cell cycle arrest at G/M along with internucleosomal DNA fragmentation. The morphological alterations included cell shrinkage and chromatin condensation. Treatment with EO also increased the percentage of apoptotic-like cells. The in vivo tumor mass inhibition rates of EO were 46.5-50.0%. The results obtained indicate the anti-liver-cancer potential of rhizome EO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25112687DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321242PMC
June 2020

GADD45B Transcript Is a Prognostic Marker in Papillary Thyroid Carcinoma Patients Treated With Total Thyroidectomy and Radioiodine Therapy.

Front Endocrinol (Lausanne) 2020 30;11:269. Epub 2020 Apr 30.

Department of Clinical Genetics, Vejle University Hospital, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.

Currently, there is a lack of efficient recurrence prediction methods for papillary thyroid carcinoma (PTC). In this study, we enrolled 202 PTC patients submitted to total thyroidectomy and radioiodine therapy with long-term follow-up (median = 10.7 years). The patients were classified as having favorable clinical outcome (PTC-FCO, no disease in the follow-up) or recurrence (PTC-RE). Alterations in , and were investigated ( = 202) and the transcriptome of 48 PTC (>10 years of follow-up) samples was profiled. Although no mutation was associated with the recurrence risk, 68 genes were found as differentially expressed in PTC-RE compared to PTC-FCO. Pathway analysis highlighted a potential role of cancer-related pathways, including signal transduction and FoxO signaling. Among the eight selected genes evaluated by RT-qPCR, and showed down-expression exclusively in the PTC-FCO group compared to non-neoplastic tissues (NT). Increased expression of was an independent marker of shorter disease-free survival [hazard ratio (HR) 2.9; 95% confidence interval (CI95) 1.2-7.0] in our cohort and with overall survival in the TCGA dataset (HR = 4.38, CI95 1.2-15.5). In conclusion, transcript was identified as a novel prognostic marker candidate in PTC patients treated with total thyroidectomy and radioiodine therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2020.00269DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203742PMC
May 2021

Nucleobase Derivatives as Building Blocks to Form Ru(II)-Based Complexes with High Cytotoxicity.

ACS Omega 2020 Jan 3;5(1):122-130. Epub 2020 Jan 3.

Departamento de Química, Instituto de Ciências Exatas e Biológicas-Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto-UFOP, CEP 35400-000 Ouro Preto, MG, Brazil.

Two new Ru(II)-based complexes containing 2-thiouracil derivatives, known as 2-thiouracil (2TU) and 6-methyl-2-thiouracil (6m2TU), were synthesized using [RuCl(PPh)(bipy)] as a precursor. The obtained compounds with a general formula [Ru(2TU)(PPh)(bipy)]PF () and [Ru(6m2TU)(PPh)(bipy)]PF () were characterized by analytical techniques such as NMR, UV-vis, and IR spectroscopies, elementary analysis, mass spectrometry, and single-crystal X-ray diffraction. Moreover, the investigation of the complexes-DNA interaction were carried out using spectrophotometric titrations and showed that the complexes present a weak interaction with this biomolecule. The compounds were evaluated against HL-60, K-562, HepG2, and B16-F10 cancer cells and against noncancer cells (PBMCs). The results of the biological assay revealed that complex is more promising than complex . Finally, the present study suggests that complexes and causes cell death by apoptosis, significantly increasing the percentage of apoptotic HL-60 cells, in which the compounds altered the cell cycle, reducing the cells in G/G, G/M, and S phases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.9b01921DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963899PMC
January 2020

In vitro and in vivo growth inhibition of human acute promyelocytic leukemia HL-60 cells by Guatteria megalophylla Diels (Annonaceae) leaf essential oil.

Biomed Pharmacother 2020 Feb 30;122:109713. Epub 2019 Dec 30.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil. Electronic address:

Guatteria megalophylla Diels (Annonaceae) is an 8-10 m tall tree that grows near streams and is widely spread throughout Colombian, Ecuadorian, Peruvian, Brazilian and Guianese Amazon rainforest. Herein, we investigated for the first time the chemical composition and in vitro and in vivo anti-leukemia potential of G. megalophylla leaf essential oil (EO) using human promyelocytic leukemia HL-60 cells as model. EO was obtained by a hydrodistillation clevenger-type apparatus and characterized quali- and quantitatively by GC-MS and GC-FID, respectively. In vitro cytotoxic potential of EO was evaluated in human cancer cell lines (HL-60, MCF-7 CAL27, HSC-3, HepG2 and HCT116) and in human non-cancer cell line (MRC-5) by Alamar blue method. Annexin V/propidium iodide staining, cell cycle distribution and reactive oxygen species (ROS) were assessed by flow cytometry for HL-60 cells treated with EO. In vivo efficacy of EO (50 and 100 mg/kg) was evaluated in C.B-17 SCID mice with HL-60 cell xenografts. Chemical composition analyses showed spathulenol, γ-muurolene, bicyclogermacrene, β-elemene and δ-elemene as main constituents of assayed sample. EO displayed in vitro cytotoxicity, including anti-leukemia effect with IC value of 12.51 μg/mL for HL-60 cells. EO treatment caused augment of phosphatidylserine externalization and DNA fragmentation without increasing of ROS in HL-60 cells. In vivo tumor mass inhibition rates of EO was 16.6-48.8 %. These data indicate anti-leukemia potential of G. megalophylla leaf EO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109713DOI Listing
February 2020

Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity.

Heliyon 2019 Sep 6;5(9):e02408. Epub 2019 Sep 6.

Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil.

In this study, we report our contribution to the application of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction for the synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and their application in the inhibition of two human cancer cells lines: human breast adenocarcinoma (MCF-7) and human hepatocellular carcinoma (HepG2). The β-keto-1,2,3-triazole derivates exhibited moderate cytotoxic activity for the HepG2 cells with IC values of 29.7 μM (), 16.4 μM (), 17.8 μM (), 20.4 μM (), 28.1 μM () and 28.2 μM (). The semi-synthetic β-keto-1,2,3-triazoles derivatives were all characterized by FT-IR, NMR, HRMS and [α].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heliyon.2019.e02408DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734327PMC
September 2019

Structure-Based Molecular Networking for the Target Discovery of Oxahomoaporphine and 8-Oxohomoaporphine Alkaloids from .

J Nat Prod 2019 08 12;82(8):2220-2228. Epub 2019 Aug 12.

Metabolomics and Mass Spectrometry Research Group , Amazonas State University , Manaus 690065-130 , Brazil.

In addition to seven known alkaloids (, -) and 1,2,4-trimethoxybenzene (), three isoquinoline-derived alkaloids (-), namely, duguetinine (), a compound based on an unprecedented oxahomoaporphine scaffold, and two new 8-oxohomoaporphine alkaloids, duguesuramine () and 11-methoxyduguesuramine (), and a new asarone-derived phenylpropanoid () were isolated from the bark of . The isolation workflow was guided by HPLC-HRESIMS/MS and molecular networking-based analyses. Twenty-four known alkaloids were dereplicated from the alkaloid-rich fraction network and were assigned by manual MS/MS interpretation. Their cytotoxic potential was evaluated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.9b00287DOI Listing
August 2019

Ruthenium(II) complexes with 6-methyl-2-thiouracil selectively reduce cell proliferation, cause DNA double-strand break and trigger caspase-mediated apoptosis through JNK/p38 pathways in human acute promyelocytic leukemia cells.

Sci Rep 2019 08 7;9(1):11483. Epub 2019 Aug 7.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.

Ruthenium(II) complexes with 6-methyl-2-thiouracil cis-[Ru(6m2tu)(PPh)] (1) and [Ru(6m2tu)(dppb)] (2) (where PPhtriphenylphosphine; dppb = 1,4-bis(diphenylphosphino)butane; and 6m2tu = 6-methyl-2-thiouracil) are potent cytotoxic agents and able to bind DNA. The aim of this study was to evaluate in vitro cellular underlying mechanism and in vivo effectiveness of these ruthenium(II) complexes in human acute promyelocytic leukemia HL-60 cells. Both complexes displayed potent and selective cytotoxicity in myeloid leukemia cell lines, and were detected into HL-60 cells. Reduction of the cell proliferation and augmented phosphatidylserine externalization, caspase-3, -8 and -9 activation and loss of mitochondrial transmembrane potential were observed in HL-60 cells treated with both complexes. Cotreatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced Ru(II) complexes-induced apoptosis. In addition, both metal complexes induced phosphorylation of histone H2AX (S139), JNK2 (T183/Y185) and p38α (T180/Y182), and cotreatment with JNK/SAPK and p38 MAPK inhibitors reduced complexes-induced apoptosis, indicating DNA double-strand break and activation of caspase-mediated apoptosis through JNK/p38 pathways. Complex 1 also reduced HL-60 cell growth in xenograft model. Overall, the outcome indicated the ruthenium(II) complexes with 6-methyl-2-thiouracil as a novel promising antileukemic drug candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-47914-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686011PMC
August 2019

Ru(II)-thymine complex causes DNA damage and apoptotic cell death in human colon carcinoma HCT116 cells mediated by JNK/p38/ERK1/2 via a p53-independent signaling.

Sci Rep 2019 07 31;9(1):11094. Epub 2019 Jul 31.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.

Ru(II)-thymine complex [Ru(PPh)(Thy)(bipy)]PF (where PPh = triphenylphosphine, Thy = thyminate and bipy = 2,2'-bipyridine) is a potent cytotoxic agent with ability to bind to DNA, inducing caspase-mediated apoptosis in leukemia cells. In this study, we investigated the mechanism underlying the cell death induction by Ru(II)-thymine complex in human colon carcinoma HCT116 cells, as well as its effect in xenograft tumor model. The Ru(II)-thymine complex increased significantly the percentage of apoptotic HCT116 cells. Co-treatment with a JNK/SAPK inhibitor, p38 MAPK inhibitor and MEK inhibitor, which inhibit the activation of ERK1/2, caused a marked reduction of the percentage of complex-induced apoptotic cells. Moreover, the Ru(II)-thymine complex induced an increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182) and phospho-ERK1 (T202/Y204) levels in HCT116 cells. Treatment with the Ru(II)-thymine complex increased significantly the phospho-histone H2AX (S139) expression, a DNA damage marker. The expression of phospho-p53 (S15) and MDM2 were not changed, and the co-treatment with a p53 inhibitor (cyclic pifithrin-α) did not reduce the complex-induced apoptosis in HCT116 cells, indicating that the Ru(II)-thymine complex induces DNA damage-mediated apoptosis by JNK/p38/ERK1/2 via a p53-independent signaling. The Ru(II)-thymine complex (1 and 2 mg/kg/day) also inhibited HCT116 cell growth in a xenograft model, reducing the tumor mass at 32.6-40.1%. Altogether, indicate that the Ru(II)-thymine complex is a promising anti-colon cancer drug candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-47539-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668648PMC
July 2019

Ruthenium Complexes Containing Heterocyclic Thioamidates Trigger Caspase-Mediated Apoptosis Through MAPK Signaling in Human Hepatocellular Carcinoma Cells.

Front Oncol 2019 9;9:562. Epub 2019 Jul 9.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.

Herein, ruthenium complexes containing heterocyclic thioamidates [Ru(mmi)(bipy)(dppb)]PF (), [Ru(tzdt)(bipy)(dppb)]PF (), [Ru(dmp)(bipy)(dppb)]PF () and [Ru(mpca)(bipy)(dppb)]PF () were investigated for their cellular and molecular effects in cancer cell lines. Complexes and were the most potent of the four compounds against a panel of different cancer cell lines in monolayer cultures and showed potent cytotoxicity in a 3D model of multicellular spheroids that formed from human hepatocellular carcinoma HepG2 cells. In addition, both complexes were able to bind to DNA in a calf thymus DNA model. Compared to the controls, a reduction in cell proliferation, phosphatidylserine externalization, internucleosomal DNA fragmentation, and the loss of the mitochondrial transmembrane potential were observed in HepG2 cells that were treated with these complexes. Additionally, coincubation with a pan-caspase inhibitor (Z-VAD(OMe)-FMK) reduced the levels of apoptosis that were induced by these compounds compared to those in the negative controls, indicating that cell death through apoptosis occurred via a caspase-dependent pathway. Moreover, these complexes also induced the phosphorylation of ERK1/2, and coincubation with an MEK inhibitor (U0126), which is known to inhibit the activation of ERK1/2, but not JNK/SAPK and p38 MAPK inhibitors, reduced the complexes-induced apoptosis compared to that in the negative controls, indicating that the induction of apoptotic cell death occurred through ERK1/2 signaling in HepG2 cells. On the other hand, no increase in oxidative stress was observed in HepG2 cells treated with the complexes, and the complexes-induced apoptosis was not reduced with coincubation with the antioxidant N-acetylcysteine or a p53 inhibitor compared to that in the negative controls, indicating that apoptosis occurred via oxidative stress- and p53-independent pathways. Finally, these complexes also reduced the growth of HepG2 cells that were engrafted in C.B-17 SCID mice compared to that in the negative controls. These results indicated that these complexes are novel anticancer drug candidates for liver cancer treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2019.00562DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629894PMC
July 2019

Ruthenium Complexes With Piplartine Cause Apoptosis Through MAPK Signaling by a p53-Dependent Pathway in Human Colon Carcinoma Cells and Inhibit Tumor Development in a Xenograft Model.

Front Oncol 2019 3;9:582. Epub 2019 Jul 3.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.

Ruthenium complexes with piplartine, [Ru(piplartine)(dppf)(bipy)](PF) () and [Ru(piplartine)(dppb)(bipy)](PF) () (dppf = 1,1-bis(diphenylphosphino) ferrocene; dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), were recently synthesized and displayed more potent cytotoxicity than piplartine in different cancer cells, regulated RNA transcripts of several apoptosis-related genes, and induced reactive oxygen species (ROS)-mediated apoptosis in human colon carcinoma HCT116 cells. The present work aimed to explore the underlying mechanisms through which these ruthenium complexes induce cell death in HCT116 cells , as well as their action in a xenograft model. Both complexes significantly increased the percentage of apoptotic HCT116 cells, and co-treatment with inhibitors of JNK/SAPK, p38 MAPK, and MEK, which inhibits the activation of ERK1/2, significantly reduced the apoptosis rate induced by these complexes. Moreover, significant increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182), and phospho-ERK1 (T202/Y204) expressions were observed in cells treated with these complexes, indicating MAPK-mediated apoptosis. In addition, co-treatment with a p53 inhibitor (cyclic pifithrin-α) and the ruthenium complexes significantly reduced the apoptosis rate in HCT116 cells, and increased phospho-p53 (S15) and phospho-histone H2AX (S139) expressions, indicating induction of DNA damage and p53-dependent apoptosis. Both complexes also reduced HCT116 cell growth in a xenograft model. Tumor mass inhibition rates were 35.06, 29.71, and 32.03% for the complex (15 μmol/kg/day), complex (15 μmol/kg/day), and piplartine (60 μmol/kg/day), respectively. These data indicate these ruthenium complexes as new anti-colon cancer drugs candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2019.00582DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616125PMC
July 2019

Ru(II) complexes containing uracil nucleobase analogs with cytotoxicity against tumor cells.

J Inorg Biochem 2019 09 9;198:110751. Epub 2019 Jun 9.

Departamento de Química, Universidade Federal de São Carlos - UFSCar, Rodovia Washington Luiz, KM 235 CP 676, CEP 13561-901 São Carlos, SP, Brazil; Instituto de Química, Universidade Federal de Goiás - UFG, CEP 74690-900 Goiânia, GO, Brazil. Electronic address:

We report on chemistry and cytotoxic studies of four new ruthenium (II) complexes containing uracil derivatives. All compounds are neutral, presenting the formula [Ru(PPh)(2TU)] (1), [Ru(PPh)(6m2TU)] (2), [Ru(dppb)(2TU)] (3) and [Ru(dppb)(6m2TU)] (4), where PPh = triphenylphosphine; dppb = 1,4-bis(diphenylphosphino)butane, 2TU = 2-thiouracil and 6m2TU = 6-methyl-2-thiouracil. They were characterized using NMR, UV-vis and IR spectroscopies, microanalytical analysis and mass spectrometry. Furthermore, the crystal structures of 1-4 were determined by single-crystal X-ray diffraction. The coordination of 2-thiouracil derivatives with ruthenium increases regions able to carry out hydrogen bonds with the biological targets, such as DNA. We evaluated the interaction of the complexes with DNA by UV/Vis spectrophotometric titration, and as a result, the values of DNA-binding constants are in the range of 0.8-1.8 × 10 M. Moreover, the interaction of the complexes with BSA was investigated. In vitro, activities against B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), HL-60 (human promyelocytic leukemia) and K562 (human chronic myelocytic leukemia) and non-tumor cells: PBMC (human peripheral blood mononuclear cells activated with concanavalin A - human lymphoblast) were carried out. Cytotoxicity assays revealed that complexes (2) and (4) present biological activity against tumor cells comparable with oxaliplatin, the reference platinum drug, revealing that they are promising molecules for developing new antitumor compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.110751DOI Listing
September 2019

Anti-Trypanosoma cruzi effect of the photodynamic antiparasitic chemotherapy using phenothiazine derivatives as photosensitizers.

Lasers Med Sci 2020 Feb 12;35(1):79-85. Epub 2019 May 12.

Center of Biophotonics, School of Dentistry, Federal University of Bahia (UFBA), 62 Araujo Pinho Ave, Canela, Salvador, BA, 40110-150, Brazil.

Chagas disease is endemic in Latin America and increasingly found in non-endemic countries. Its treatment is limited due to the variable efficacy and several side effects of benznidazole. Photodynamic antimicrobial chemotherapy (PACT) may be an attractive approach for treating Chagas disease. Here, the trypanocidal activity of PACT was investigated in vitro using phenothiazine derivatives. The cytotoxicity of both, methylene blue (MB) and toluidine blue (TBO), was determined on macrophages cultures using AlamarBlue method. The trypanocidal activity of the two photosensitizers was initially evaluated by determining their IC values against trypomastigote forms. After this, the trypanocidal effect was evaluated in cultures of infected macrophages using an automatized image analysis protocol. All experiments were performed in the dark and in the clear phase (after a photodynamic exposure). The compounds showed no cytotoxicity in both phases at the tested concentrations. The IC values for the sole use of MB and TBO were 2.6 and 1.2 μM, respectively. The photoactivation of the compounds using a fixed energy density (J/cm) caused a reduction of the IC values to 1.0 and 0.9 μM, respectively. It was found that, on infected macrophage, the use of TBO significantly reduced the number of infected cells and parasitic load, and this effect was increased in the presence of light. The results of the present study are indicative that PACT may be considered as both selective and effective therapeutic intervention for treating Chagas disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-019-02795-4DOI Listing
February 2020

Antileishmanial Activity of Dimeric Flavonoids Isolated from .

Molecules 2018 Dec 20;24(1). Epub 2018 Dec 20.

Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Avenida Waldemar Falcão, 121, Candeal⁻Salvador-BA 40296-710, Brazil.

Leishmaniasis are diseases caused by parasites belonging to genus. The treatment with pentavalent antimonials present high toxicity. Secondary line drugs, such as amphotericin B and miltefosine also have a narrow therapeutic index. Therefore, there is an urgent need to develop new drugs to treat leishmaniasis. Here, we present the in vitro anti-leishmanial activity of unusual dimeric flavonoids purified from . Three compounds were tested against sp. Compound 2 was the most active against promastigotes. Quantifying the in vitro infected macrophages revealed that compound 2 was also the most active against intracellular amastigotes of , without displaying host cell toxicity. Drug combinations presented an additive effect, suggesting the absence of interaction between amphotericin B and compound 2. Amastigotes treated with compound 2 demonstrated alterations in the Golgi and accumulation of vesicles inside the flagellar pocket. Compound 2-treated amastigotes presented a high accumulation of cytoplasmic vesicles and a myelin-like structure. When administered in -infected mice, neither the oral nor the topical treatments were effective against the parasite. Based on the high in vitro activity, dimeric flavonoids can be used as a lead structure for the development of new molecules that could be useful for structure-active studies against .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules24010001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337281PMC
December 2018

In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae).

J Ethnopharmacol 2019 Mar 13;231:516-524. Epub 2018 Nov 13.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil. Electronic address:

Ethnopharmacological Relevance: Salacia impressifolia (Miers) A. C. Smith (family Celastraceae) is a traditional medicinal plant found in the Amazon Rainforest known as "miraruíra", "cipó-miraruíra" or "panu" and is traditionally used to treat dengue, flu, inflammation, pain, diabetes, male impotency, renal affections, rheumatism and cancer.

Aim Of The Study: The aim of this study was to investigate in vitro and in vivo anti-leukemia activity of the stem bark of S. impressifolia in experimental models.

Materials And Methods: The in vitro cytotoxic activity of extracts, fractions and quinonemethide triterpenes (22-hydroxytingenone, tingenone and pristimerin) from the stem bark of S. impressifolia in cultured cancer cells was determined. The in vivo antitumor activity of the ethyl acetate extract (EAE) and of its fraction (FEAE.3) from the stem bark of S. impressifolia was assessed in C.B-17 severe combined immunodeficient (SCID) mice engrafted with human promyelocytic leukemia HL-60 cells.

Results: The extract EAE, its fraction FEAE.3, and quinonemethide triterpenes exhibited potent cytotoxicity against cancer cell lines, including in vitro anti-leukemia activity against HL-60 and K-562 cells. Moreover, extract EAE and its fraction FEAE.3 inhibited the in vivo development of HL-60 cells engrafted in C.B-17 SCID mice. Tumor mass inhibition rates were measured as 40.4% and 81.5% for the extract EAE (20 mg/kg) and for its fraction FEAE.3 (20 mg/kg), respectively.

Conclusions: Ethyl acetate extract and its fraction from the stem bark of S. impressifolia exhibit in vitro and in vivo anti-leukemia activity that can be attributed to their quinonemethide triterpenes. These data confirm the ethnopharmacological use of this species and may contribute to the development of a novel anticancer herbal medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2018.11.008DOI Listing
March 2019

Antitumor Effect of the Essential Oil from the Leaves of Aubl. (Euphorbiaceae).

Molecules 2018 Nov 14;23(11). Epub 2018 Nov 14.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.

Aubl. (synonym Jabl.), popularly known as "orelha de burro", "maravuvuia", and/or "sangrad'água", is a medicinal plant used in Brazilian folk medicine as a depurative and in the treatment of infections, fractures, and colds. In this work, we investigated the chemical composition and in vitro cytotoxic and in vivo antitumor effects of the essential oil (EO) from the leaves of collected from the Amazon rainforest. The EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC⁻MS) and gas chromatography with flame ionization detection (GC⁻FID), respectively. In vitro cytotoxicity of the EO was assessed in cancer cell lines (MCF-7, HCT116, HepG2, and HL-60) and the non-cancer cell line (MRC-5) using the Alamar blue assay. Furthermore, annexin V-FITC/PI staining and the cell cycle distribution were evaluated with EO-treated HepG2 cells by flow cytometry. In vivo efficacy of the EO (40 and 80 mg/kg/day) was demonstrated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The EO included β-caryophyllene, thunbergol, cembrene, -cymene, and β-elemene as major constituents. The EO exhibited promising cytotoxicity and was able to cause phosphatidylserine externalization and DNA fragmentation without loss of the cell membrane integrity in HepG2 cells. In vivo tumor mass inhibition rates of the EO were 34.6% to 55.9%. Altogether, these data indicate the anticancer potential effect of .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules23112974DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278459PMC
November 2018

Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action.

J Photochem Photobiol B 2018 Dec 19;189:165-175. Epub 2018 Oct 19.

Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, 57072-900 Maceió, AL, Brazil. Electronic address:

Acridines are considered an important class of compounds due to their wide variety of biological activities. In this work, we synthesized four acridine derivatives (1-4) and evaluated their biological activity against the Plasmodium falciparum W2 line, as well as studied the interaction with ctDNA and HSA using spectroscopic techniques and molecular docking. The acridine derivative 2 (IC = 0.90 ± 0.08 μM) was more effective against P. falciparum than primaquine (IC = 1.70 ± 0.10 μM) and similar to amsacrine (IC = 0.80 ± 0.10 μM). In the fluorescence and UV-vis assays, it was verified that the acridine derivatives interact with ctDNA and HSA leading to a non-fluorescent supramolecular complex formation. The non-covalent binding constants ranged from 2.09 to 7.76 × 10 M, indicating moderate interaction with ctDNA. Through experiments with KI, fluorescence contact energy transfer and competition assays were possible to characterize the main non-covalent binding mode of the acridines evaluated with ctDNA as intercalation. The binding constants obtained showed a high linear correlation with the IC values against the antimalarial activity, suggesting that DNA may be the main biological target of these molecules. Finally, HSA interaction studies were performed and all evaluated compounds bind to the site II of the protein. The less active compounds (1 and 3) presented the highest affinity to HSA, indicating that the interaction with carrier protein can affect the (bio)availability of these compounds to the biological target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2018.10.016DOI Listing
December 2018

A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells.

Redox Biol 2019 01 12;20:182-194. Epub 2018 Oct 12.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador, Bahia, Brazil. Electronic address:

Piplartine (piperlongumine) is a plant-derived compound found in some Piper species that became a novel potential antineoplastic agent. In the present study, we synthesized a novel platinum complex containing a piplartine derivative cis-[PtCl(PIP-OH)(PPh)]PF (where, PIP-OH = piplartine demethylated derivative; and PPh = triphenylphosphine) with enhanced cytotoxicity in different cancer cells, and investigated its apoptotic action in human promyelocytic leukemia HL-60 cells. The structure of PIP-OH ligand was characterized by X-ray crystallographic analysis and the resulting platinum complex was characterized by infrared, molar conductance measurements, elemental analysis and NMR experiments. We found that the complex is more potent than piplartine in a panel of cancer cell lines. Apoptotic cell morphology, increased internucleosomal DNA fragmentation, without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization and caspase-3 activation were observed in complex-treated HL-60 cells. Treatment with the complex also caused a marked increase in the production of reactive oxygen species (ROS), and the pretreatment with N-acetyl-L-cysteine, an antioxidant, reduced the complex-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. Important, pretreatment with a p38 MAPK inhibitor (PD 169316) and MEK inhibitor (U-0126), known to inhibit ERK1/2 activation, also prevented the complex-induced apoptosis. The complex did not induce DNA intercalation in cell-free DNA assays. In conclusion, the complex exhibits more potent cytotoxicity than piplartine in a panel of different cancer cells and triggers ROS/ERK/p38-mediated apoptosis in HL-60 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2018.10.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198128PMC
January 2019

IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease.

Stem Cells Int 2018 24;2018:9108681. Epub 2018 Jul 24.

Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil.

Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-, but only MSC treatment reduced IFN- production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in -infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF- and IL-1. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2018/9108681DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081563PMC
July 2018
-->