Publications by authors named "Michele Salanova"

25 Publications

  • Page 1 of 1

Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Muscle in Long-Term Bedrest (Toulouse Cocktail Study).

Antioxidants (Basel) 2021 Mar 3;10(3). Epub 2021 Mar 3.

Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.

Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo, = 10) vs. the antioxidant cocktail treated group (Treatment, = 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox10030378DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001160PMC
March 2021

Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning.

Front Physiol 2020 12;11:71. Epub 2020 Feb 12.

DMEM, Université Montpellier, INRAE, Montpellier, France.

Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivity using the head-down bed rest (HDBR) model. Twenty healthy men were recruited; half of them received a daily antioxidant/anti-inflammatory supplementation, whereas the other half received a placebo. Muscle biopsies were collected from the vastus lateralis muscles before and after bedrest and 10 days after remobilization. After 2 months of HDBR, all subjects presented muscle deconditioning characterized by a loss of muscle strength and an atrophy of muscle fibers, which was not prevented by cocktail supplementation. Our results regarding muscle oxidative damage, mitochondrial content, and protein balance actors refuted the potential protection of the cocktail during long-term inactivity and showed a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. This study demonstrated the ineffectiveness of our cocktail supplementation and underlines the complexity of redox balance mechanisms. It raises interrogations regarding the appropriate nutritional intervention to fight against muscle deconditioning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2020.00071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028694PMC
February 2020

Reactive Jumps Preserve Skeletal Muscle Structure, Phenotype, and Myofiber Oxidative Capacity in Bed Rest.

Front Physiol 2019 15;10:1527. Epub 2020 Jan 15.

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.

Identification of countermeasures able to prevent disuse-induced muscle wasting is crucial to increase performance of crew members during space flight as well as ameliorate patient's clinical outcome after long immobilization periods. We report on the outcome of short but high-impact reactive jumps (JUMP) as countermeasure during 60 days of 6° head-down tilt (HDT) bed rest on myofiber size, type composition, capillarization, and oxidative capacity in tissue biopsies (pre/post/recovery) from the knee extensor (VL) and deep calf (SOL) muscle of 22 healthy male participants (Reactive jumps in a sledge, RSL-study 2015-2016, DLR:envihab, Cologne). Bed rest induced a slow-to-fast myofiber shift (type I ->II) with an increased prevalence of hybrid fibers in SOL after bed rest without jumps (control, CTRL, = 0.016). In SOL, JUMP countermeasure in bed rest prevented both fast and slow myofiber cross-sectional area (CSA) decrements ( = 0.005) in CTRL group. In VL, bed rest only induced capillary rarefaction, as reflected by the decrease in local capillary-to-fiber ratio (LCFR) for both type II (pre vs. post/R + 10, = 0.028/0.028) and type I myofibers (pre vs. R + 10, = 0.012), which was not seen in the JUMP group. VO (pL × mm × min) calculated from succinate dehydrogenase (SDH)-stained cryosections (OD) showed no significant differences between groups. High-impact jump training in bed rest did not prevent disuse-induced myofiber atrophy in VL, mitigated phenotype transition (type I - >II) in SOL, and attenuated capillary rarefaction in the prime knee extensor VL however with little impact on oxidative capacity changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2019.01527DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974579PMC
January 2020

Bed Rest, Exercise Countermeasure and Reconditioning Effects on the Human Resting Muscle Tone System.

Front Physiol 2018 3;9:810. Epub 2018 Jul 3.

Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.

The human resting muscle tone (HRMT) system provides structural and functional support to skeletal muscle and associated myofascial structures (tendons, fascia) in normal life. Little information is available on changes to the HRMT in bed rest. A set of dynamic oscillation mechanosignals ([Hz], [N/m], log decrement, [ms]) collected and computed by a hand-held digital palpation device (MyotonPRO) were used to study changes in tone and in key biomechanical and viscoelastic properties in global and postural skeletal muscle tendons and fascia from a non-exercise control (CTR) and an exercise (JUMP) group performing reactive jumps on a customized sledge system during a 60 days head-down tilt bed rest (RSL Study 2015-2016). A set of baseline and differential natural oscillation signal patterns were identified as key determinants in resting muscle and myofascial structures from back, thigh, calf, patellar and Achilles tendon, and plantar fascia. The greatest changes were found in thigh and calf muscle and tendon, with little change in the shoulder muscles. Functional tests (one leg jumps, electromyography) showed only trends in relevant leg muscle groups. Increased anti-Collagen-I immunoreactivity found in CTR soleus biopsy cryosections was absent from JUMP. Results allow for a muscle health status definition after chronic disuse in bed rest without and with countermeasure, and following reconditioning. Findings improve our understanding of structural and functional responses of the HRMT to disuse and exercise, may help to guide treatment in various clinical settings (e.g., muscle tone disorders, neuro-rehabilitation), and promote monitoring of muscle health and training status in personalized sport and space medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2018.00810DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037768PMC
July 2018

Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

Front Physiol 2018 23;9:616. Epub 2018 May 23.

Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany.

The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2018.00616DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974101PMC
May 2018

Microgravity-Induced Transcriptome Adaptation in Mouse Paraspinal Muscle Highlights Insulin Resistance-Linked Genes.

Front Physiol 2017 5;8:279. Epub 2017 May 5.

Center of Space Medicine Berlin, Charité Universitätsmedizin BerlinBerlin, Germany.

Microgravity as well as chronic muscle disuse are two causes of low back pain originated at least in part from paraspinal muscle deconditioning. At present no study investigated the complexity of the molecular changes in human or mouse paraspinal muscles exposed to microgravity. The aim of this study was to evaluate adaptation to microgravity at both morphological and global gene expression level. C57BL/N6 male mice were flown aboard the BION-M1 biosatellite for 30 days (BF) or housed in a replicate flight habitat on ground (BG). Myofiber cross sectional area and myosin heavy chain subtype patterns were respectively not or slightly altered in of BF mice. Global gene expression analysis identified 89 transcripts differentially regulated in of BF vs. BG mice. Microgravity-induced gene expression changes of lipocalin 2 (Lcn2), sestrin 1(Sesn1), phosphatidylinositol 3-kinase, regulatory subunit polypeptide 1 (p85 alpha) (Pik3r1), v-maf musculoaponeurotic fibrosarcoma oncogene family protein B (Mafb), protein kinase C delta (Prkcd), Muscle Atrophy F-box (MAFbx/Atrogin-1/Fbxo32), and Muscle RING Finger 1 (MuRF-1) were further validated by real time qPCR analysis. In conclusion, our study highlighted the regulation of transcripts mainly linked to insulin sensitivity and metabolism in following 30 days of microgravity exposure. The apparent absence of robust signs of back muscle atrophy in space-flown mice, despite the overexpression of Atrogin-1 and MuRF-1, opens new questions on the possible role of microgravity-sensitive genes in the regulation of peripheral insulin resistance following unloading and its consequences on paraspinal skeletal muscle physiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2017.00279DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418220PMC
May 2017

Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance.

Diabetologia 2017 08 12;60(8):1491-1501. Epub 2017 May 12.

3U Diabetes Consortium, School of Health and Human Performance, Dublin City University, Glasnevin, Dublin 9, D09 NR58, Ireland.

Aims/hypothesis: Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest.

Methods: Participants (n = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic-euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA).

Results: Body mass (-3.2 ± 0.5 kg vs -2.8 ± 0.4 kg for CON and RVE, respectively, p < 0.05), fat-free mass (-2.9 ± 0.5 kg vs -2.7 ± 0.5 kg, p < 0.05) and peak oxygen consumption ([Formula: see text]) (10-15%, p < 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM [pmol l] min vs 0.03 ± 0.002 mg kgFFM [pmol l] min for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM [pmol l] min). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content.

Conclusions/interpretation: Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-017-4298-zDOI Listing
August 2017

Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

PLoS One 2017 11;12(1):e0169314. Epub 2017 Jan 11.

Center for Space Medicine Berlin, Neuromuscular Group, Charité Universitätsmedizin Berlin, Berlin, Germany.

Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169314PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226721PMC
August 2017

Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest.

J Appl Physiol (1985) 2016 10 11;121(4):838-848. Epub 2016 Aug 11.

School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.

The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles (P < 0.05), and the fiber oxidative capacity (P < 0.001) and V̇o (P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL (P < 0.001). WP+KHCO attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles (P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO appears to attenuate disuse-induced reductions in fiber oxidative capacity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00936.2015DOI Listing
October 2016

Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest.

Sci Rep 2015 Nov 24;5:17027. Epub 2015 Nov 24.

Center of Space Medicine Berlin, Neuromuscular System, Institute of Anatomy, Charité Universitätsmedizin Berlin, Germany.

Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end- vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep17027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657004PMC
November 2015

Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis.

FASEB J 2014 Nov 13;28(11):4748-63. Epub 2014 Aug 13.

Center of Space Medicine Berlin, Neuromuscular Group, Institute of Anatomy, and.

In the present bed rest (BR) study, 23 volunteers were randomized into 3 subgroups: 60 d BR control (Ctr); BR with resistive exercise (RE; lower-limb load); and resistive vibration exercise (RVE; RE with superimposed vibration). The aim was to analyze by confocal and electron microscopy the effects of vibration on myofibril and filament integrity in soleus (Sol) and vastus lateralis (VL) muscle; differential proteomics of contractile, cytoskeletal, and costameric proteins (TN-C, ROCK1, and FAK); and expression of PGC1α and atrophy-related master genes MuRF1 and MuRF2. RVE (but not RE) preserved myofiber size and phenotype in Sol and VL by overexpressing MYBPC1 (42%, P ≤ 0.01), WDR1 (39%, P ≤ 0.01), sarcosin (84%, P ≤ 0.01), and CKM (20%, P ≤ 0.01) and prevented myofibrillar ultrastructural damage as detectable by MuRF1 expression. In Sol, cytoskeletal and contractile proteins were normalized by RVE, and TN-C increased (59%, P ≤ 0.01); the latter also with RE (108%, P ≤ 0.01). In VL, the outcomes of both RVE (acting on sarcosin and desmin) and RE (by way of troponinT-slow and MYL2) were similar. RVE appears to be a highly efficient countermeasure protocol against muscle atrophy and ultrastructural and molecular dysregulation induced by chronic disuse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.14-252825DOI Listing
November 2014

Increased myofiber remodelling and NFATc1-myonuclear translocation in rat postural skeletal muscle after experimental vestibular deafferentation.

J Vestib Res 2013 ;23(4-5):187-93

Department of Vegetative Anatomy, Neuromuscular Group, Charité - University Medicine Berlin, Berlin, Germany Center for Space Medicine Berlin (ZWMB), Berlin, Germany.

Background: The vestibular system undergoes considerable modification during spaceflight [5]. This is paralleled by microgravity-induced muscle atrophy [6]. However, the possibility of vestibulo-autonomic regulatory mechanisms affecting skeletal muscle structure and function have not yet been addressed.

Objective: We hypothesise that the vestibular system affects anti-gravitational skeletal muscle phenotype composition, size and the transcriptional factor called nuclear factor of activated T cells (NFATc1).

Methods: In a laboratory study, we examined the morphological and histochemical properties including intramyocellular NFATc1 changes in slow-type soleus muscle of chemically labyrinthectomized rats (VLx; n=8) compared to a control group (Sham; n=6) after a period of one month.

Results And Conclusion: Neurochemical vestibular deafferentation resulted in smaller myofibre sizes, altered myofibre phenotype composition, high yields of hybrid fibre formation, and reduced myonuclear NFATc1 accumulation as signs of slow-type myofibre atrophy, myofibre type remodelling, and altered nuclear transcriptional activity in the postural soleus muscle of rats. We propose that vestibulo-autonomic modification of skeletal muscles occurs during prolonged microgravity. Our findings are likely to have implications for vestibular rehabilitation in clinical settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/VES-130499DOI Listing
July 2014

Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

Redox Biol 2013 28;1:514-26. Epub 2013 Oct 28.

Charité - Universitätsmedizin Berlin, Center for Space Medicine Berlin (ZWMB) Germany ; Charité - Universitätsmedizin Berlin, Department of Anatomy, Neuromuscular Group, Berlin, Germany.

Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2013.10.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830069PMC
May 2015

Homer protein family regulation in skeletal muscle and neuromuscular adaptation.

IUBMB Life 2013 Sep 5;65(9):769-76. Epub 2013 Aug 5.

Department of Vegetative Anatomy and Center of Space Medicine Berlin (ZWMB), Neuromuscular Group, Charité Universitätsmedizin Berlin, Berlin, Germany.

Scaffolding adaptor proteins of the Homer family have recently been implicated in regulation of a large number of physiological processes owing to their remarkable ability to coordinate a complex network of different molecular players within the same signaling pathway. However, because of their unique molecular properties that also allow functional modulation of a plethora of different interacting protein partners, Homers seem to play additional and important roles in the integration of several molecular players belonging to different signaling pathways and thus allowing crosstalk. The role of the Homer protein family has been previously extensively investigated in neuronal tissue where it was first discovered as a new protein family being upregulated in response to brain seizures (Brakeman P.R., et al., Nature 1997, 386, 284-288.). Recently, the role of Homers was also proposed in skeletal muscle physiology. For instance, it has been shown that Homers regulate both the myogenic differentiation program and the open probability (Po) of several ion channels. Furthermore, by knocking out Homer1, one of the three Homer genes, mice carrying such deletion displayed a pronounced skeletal muscle myopathy associated with altered transient receptor potential activity and calcium homeostasis. Homer expression has now been further characterized at the neuromuscular junction in skeletal muscle. Apart from their known role at central synapses, Homers are important physiological determinants in differentiation, development, and adaptation in skeletal muscle and the neuromuscular system and thus integrating motor neuron control, for example, with downstream calcium signaling pathways in muscle fibers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.1198DOI Listing
September 2013

Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.

PLoS One 2012 28;7(3):e33232. Epub 2012 Mar 28.

Department of Biomedical Sciences, University of Padova, Padova, Italy.

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033232PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314659PMC
August 2012

Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise.

FASEB J 2011 Dec 1;25(12):4312-25. Epub 2011 Sep 1.

Center of Space Medicine Berlin, Neuromuscular Group, Institute of Anatomy, Charité Universitätsmedizin Berlin, Campus Charité Mitte, Philippstrasse 12, 10115, Berlin, Germany.

Protein calcium sensors of the Homer family have been proposed to modulate the activity of various ion channels and nuclear factor of activated T cells (NFAT), the transcription factor modulating skeletal muscle differentiation. We monitored Homer expression and subcellular localization in human skeletal muscle biopsies following 60 d of bedrest [Second Berlin Bedrest Study (BBR2-2)]. Soleus (SOL) and vastus lateralis (VL) biopsies were taken at start (pre) and at end (end) of bedrest from healthy male volunteers of a control group without exercise (CTR; n=9), a resistive-only exercise group (RE; n=7), and a combined resistive/vibration exercise group (RVE; n=7). Confocal analysis showed Homer immunoreactivity at the postsynaptic microdomain of the neuromuscular junction (NMJ) at bedrest start. After bedrest, Homer immunoreactivity decreased (CTR), remained unchanged (RE), or increased (RVE) at the NMJ. Homer2 mRNA and protein were differently regulated in a muscle-specific way. Activated NFATc1 translocates from cytoplasm to nucleus; increased amounts of NFATc1-immunopositive slow-type myonuclei were found in RVE myofibers of both muscles. Pulldown assays identified NFATc1 and Homer as molecular partners in skeletal muscle. A direct motor nerve control of Homer2 was confirmed in rat NMJs by in vivo denervation. Homer2 is localized at the NMJ and is part of the calcineurin-NFATc1 signaling pathway. RVE has additional benefit over RE as countermeasure preventing disuse-induced neuromuscular maladaptation during bedrest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-186049DOI Listing
December 2011

Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation.

Proteomics 2010 Nov;10(21):3756-74

Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milano, Italy.

The present investigation, the first in the field, was aimed at analyzing differentially, on individual samples, the effects of 55 days of horizontal bed rest, a model for microgravity, on myosin heavy and myosin light chain isoforms distribution (by SDS) and on the proteome (by 2-D DIGE and MS) in the vastus lateralis (VL), a mixed type II/I (∼50:50%) head of the quadriceps and in the calf soleus (SOL), a predominantly slow (∼35:65%) twitch muscle. Two separate studies were performed on six subjects without (BR) and six with resistive vibration exercise (RVE) countermeasures, respectively. Both VL and SOL underwent in BR decrements of ∼15% in cross-sectional area and of ∼22% in maximal torque that were prevented by RVE. Myosin heavy chain distribution showed increased type I and decreased type IIA in BR both in VL and in SOL, the opposite with RVE. A substantial downregulation of proteins involved in aerobic metabolism characterized both in SOL and VL in BR. RVE reversed the pattern more in VL than in SOL, whereas proteins involved in anaerobic glycolysis were upregulated. Proteins from the Z-disk region and from costamers were differently dysregulated during bed rest (both BR and RVE), particularly in VL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200900817DOI Listing
November 2010

Atypical fast SERCA1a protein expression in slow myofibers and differential S-nitrosylation prevented by exercise during long term bed rest.

Histochem Cell Biol 2009 Oct 31;132(4):383-94. Epub 2009 Jul 31.

Department of Vegetative Anatomy, Center of Space Medicine Berlin, Neuromuscular Group, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, Berlin 14195, Germany.

We monitored changes in SERCA isoform specific expression and S-nitrosylation in myofibers of lower limb soleus (SOL) and vastus lateralis (VL) muscle biopsies before and after 60 days of voluntary long term bed rest (BR) without (BR-CTRL group, n = 8) and with exercise countermeasure (BR-EX group, n = 8). Before BR, a typical myofiber type-specific distribution of fast and slow SERCA1/2a isoforms was seen. After BR, a subpopulation (approx. 15%) of slow myofibers in BR-CTRL additionally expressed the fast SERCA1a isoform which was not seen in BR-EX. After BR, SERCA1a S-nitrosylation patterns analyzed by the biotin-switch assay decreased in disused SOL only but increased in both muscles following exercise. Differential SERCA1a S-nitrosylation and SERCA1a/2a co-expression in subsets of slow myofibers should be considered as signs of an altered cytosolic Ca(2+) homeostasis following chronic muscle disuse. Exercise preserved myofiber type-specific SERCA1a expression and S-nitrosylation in VL and SOL in a different way, suggesting muscle-specific responses to the countermeasure protocol applied during bed rest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-009-0624-yDOI Listing
October 2009

Morphological, physiological and behavioural evaluation of a 'Mice in Space' housing system.

J Comp Physiol B 2009 May 8;179(4):519-33. Epub 2009 Jan 8.

Vegetative Anatomy, Center of Space Medicine Berlin, Neuromuscular Group, Charité Universitätsmedizin Berlin, Freie und Humboldt Universität Berlin, Berlin, Germany.

Environmental conditions likely affect physiology and behaviour of mice used for life sciences research on Earth or in Space. Here, we analysed the effects of cage confinement on the weightbearing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based and fully automated life support habitat device called "Mice in Space" (MIS). Compared with control housing (individually ventilated cages) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, aggressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure during spaceflight. Our results may be even more helpful in developing multidisciplinary protocols with adequate scenarios addressing molecular to systems levels using mice of various genetic phenotypes in many laboratories.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-008-0330-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755731PMC
May 2009

Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent.

Am J Physiol Renal Physiol 2008 Sep 25;295(3):F789-802. Epub 2008 Jun 25.

Institute of Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, Berlin, Germany.

Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.90227.2008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536870PMC
September 2008

Ryanodine receptor type-1 (RyR1) expression and protein S-nitrosylation pattern in human soleus myofibres following bed rest and exercise countermeasure.

Histochem Cell Biol 2008 Jul 19;130(1):105-18. Epub 2008 Feb 19.

Center of Space Medicine Berlin, Neuromuscular Group, Charité, Universitätsmedizin Berlin, 14195, Berlin, Germany.

The ryanodine receptor type-I (RyR1) is one key player of the excitation-contraction coupling (E-CC) machinery. However, RyR1 expression in human skeletal muscle disuse and plasticity changes are not well documented. We studied the expression and the functional modifications of RyR1 following prolonged bed rest (BR) without and with exercise countermeasure (Resistive Vibration Exercise, RVE). Soleus biopsies were taken from a non-trained control (BR-CTRL) and trained (BR-RVE) group (each n = 10) before and after BR. In BR-CTRL group, a fibre type-specific immunopattern of RyR1 (type-I < type-II) was documented, and RyR1 immunofluorescence intensity and protein expression together with [(3)H]ryanodine binding were decreased after BR. In BR-RVE group, RyR1 immunosignals were increased and fiber type specificity was no longer present. RyR1 protein expression was unchanged, whereas [(3)H]ryanodine binding increased after BR. Confocal and biochemical analysis confirmed subcellular co-localisation and protein-protein interaction of RyR1 with nitric oxide (NO)-synthase type-1 (NOS1). S-nitrosylation of RyR1 was increased in BR-CTRLpost only, suggesting a reduction of RyR1 open channel probability by nitrosylation mechanisms following prolonged disuse. We conclude that following extended body deconditioning in bed rest, RVE countermeasure maintained normal RyR1 expression and nitrosylation patterns required for adequate E-CC in human performance control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-008-0399-6DOI Listing
July 2008

Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb.

Am J Physiol Regul Integr Comp Physiol 2007 Mar 2;292(3):R1328-37. Epub 2006 Nov 2.

Center of Anatomy, Cardio-Renal-Unit, Charité Universitätsmedizin Berlin, Philippstrasse 12, 10115 Berlin, Germany.

Lipid rafts are cholesterol- and shingolipid-enriched membrane microdomains implicated in membrane signaling and trafficking. To assess renal epithelial raft functions through the characterization of their associated membrane proteins, we have isolated lipid rafts from rat kidney by sucrose gradient fractionation after detergent treatment. The low-density fraction was enriched in cholesterol, sphingolipid, and flotillin-1 known as lipid raft markers. Based on proteomic analysis of the low-density fraction, the protein with the highest significance score was the alpha-subunit of Na(+)-K(+)-ATPase (NKA), whose raft association was validated by simultaneous immunoblotting. The beta-subunit of NKA was copurified from the low-density fraction. To test the role of lipid rafts in sorting and membrane delivery of renal-transporting epithelia, we have chosen to study thick ascending limb (TAL) epithelium for its high NKA activity and the property to be stimulated by antidiuretic hormone (ADH). Cultured rabbit TAL cells were studied. Cholesterol depletion and detergent extraction at warmth caused a shift of NKA to the higher-density fractions. Comparative preparations from blood monocytes revealed the absence of NKA from rafts in these nonpolarized cells. Short-term exposure of rabbit TAL cells to ADH (1 h) caused translocation and enhanced raft association of NKA via cAMP activation. Preceding cholesterol depletion prevented this effect. TAL-specific, glycosylphosphatidylinositol-anchored Tamm Horsfall protein was copurified with NKA in the same raft fraction, suggesting functional interference between these products. These results may have functional implications regarding the turnover, trafficking, and regulated surface expression of NKA as the major basolateral ion transporter of TAL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00166.2006DOI Listing
March 2007

Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest.

Eur J Appl Physiol 2006 Jun 28;97(3):261-71. Epub 2006 Mar 28.

Department of Vegetative Anatomy, Center of Space Medicine Berlin, Neuromuscular Group, Charité University Medicine Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195, Berlin, Germany.

Prolonged immobilization of the human body results in functional impairments and musculoskeletal system deconditioning that may be attenuated by adequate muscle exercise. In a 56-day horizontal bed rest campaign involving voluntary males we investigated the effects of vibration muscle exercise (RVE, 2x6 min daily) on the lower limb skeletal muscles using a newly designed foot plantar trainer (Galileo Space) for use at supine position during bed rest. The maximally voluntary isometric plantar flexion force was maintained following regular RVE bouts during bed rest (controls -18.6 %, P<0.05). At the start (BR2) and end of bed rest (BR55) muscle biopsies were taken from both mixed fast/slow-type vastus lateralis (VL) and mainly slow-type soleus muscle (SOL), each having n=10. RVE group: the size of myofiber types I and II was largely unchanged in VL, and increased in SOL. Ctrl group: the SOL depicted a disrupted pattern of myofibers I/II profiles (i.e., type II>140 % vs. preBR) suggesting a slow-to-fast muscle phenotype shift. In RVE-trained SOL, however, an overall conserved myofiber I/II pattern was documented. RVE training increased the activity-dependent expression of nitric oxide synthase type 1 immunofluorescence at SOL and VL myofiber membranes. These data provide evidence for the beneficial effects of RVE training on the deconditioned structure and function of the lower limb skeletal muscle. Daily short RVE should be employed as an effective atrophy countermeasure co-protocol preferentially addressing postural calf muscles during prolonged clinical immobilization or long-term human space missions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-006-0160-6DOI Listing
June 2006

Differential expression of nitric oxide synthases (NOS 1-3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest.

FASEB J 2004 Aug 4;18(11):1228-30. Epub 2004 Jun 4.

Department of Anatomy, Campus Benjamin Franklin, Charité University Medicine Berlin, Germany.

Adaptive changes of major body systems in astronauts during spaceflight can be simulated by strict anti-orthostatic head-down tilt (HDT) bed rest (BR), a ground-based microgravity (microG) model that provides a meaningful opportunity to study atrophy mechanisms and possible countermeasures under controlled experimental conditions. As nitric oxide (NO) signaling is linked to muscle activity, we investigated altered expression of the three major isoforms of nitric oxide synthase (NOS 1-3) at cellular compartments during prolonged HDT BR without (control group) and with resistance exercise interventions (exercise group) using a flywheel ergometer (FWE). Atrophy detected in mixed (fast-slow) m. vastus lateralis (VL) and slow-type m. soleus (SOL) myofiber Types I and II (minus 35-40% of myofiber cross-sectional area) was prevented by FWE training. Concomitant to muscle atrophy, reduced NOS 1 protein and immunostaining was found in VL not in SOL biopsies. In trained VL, NOS 1 protein and immunostaining at myofibers II were significantly increased at the end of BR. Exercise altered NOS 2/caveolin 3 co-immunostaining patterns of subsarcolemmal focal accumulations in VL or SOL myofibers, which suggests reorganization of sarcolemmal microdomains. In trained VL, increased capillary-to-fiber (C/F) ratio and NOS 3 protein content were documented. Activity-linked NO signaling may be widespread in skeletal muscle cellular compartments that may be directly or indirectly impacted by adequate exercise countermeasure protocols to offset the negative effects induced by disuse, immobilization, or extended exposure to microgravity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.03-0792fjeDOI Listing
August 2004

Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments.

Am J Physiol Renal Physiol 2004 Jul 16;287(1):F17-24. Epub 2004 Mar 16.

Division of Nephrology and Hypertension, Oregon Health and Science University, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA.

TRPV4, a nonselective cation channel of the transient receptor potential (TRP) family, is gated by hypotonicity. Expression of TRPV4 mRNA has been detected in the circumventricular organs of the brain responsible for sensing systemic tonicity and in the kidney distal convoluted tubule (DCT), among other sites. No analysis of TRPV4 expression at the protein level has been undertaken and no systematic analysis of expression of this channel has been reported in the kidney. Via RNAse protection assay and immunoblotting, abundant expression of TRPV4 was detected in the cortex, medulla, and papilla. The expression pattern of TRPV4 was characterized in both rat and mouse kidney, which revealed similar patterns of immunoreactivity. TRPV4 expression was absent from the proximal tubule (PT) and descending thin limb (DTL), whereas the strongest expression was observed in the ascending thin limb (ATL). The thick ascending limb (TAL) was strongly positive as was the DCT and connecting tubule. Importantly, the water-permeant cells of the macula densa were unstained. Moderate TRPV4 expression was noted in all collecting duct portions and in papillary epithelium; intercalated cells (type A) exhibited a particularly strong signal. In all positive segments, TRPV4 expression was concentrated at the basolateral membrane. Therefore, TRPV4 is expressed in only those nephron segments that are constitutively (i.e., ATL, TAL, and DCT) or conditionally (i.e., collecting duct) water impermeant and where generation of a substantial transcellular osmotic gradient could be expected. TRPV4 expression is absent from nephron segments exhibiting constitutive water permeability and unregulated apical aquaporin expression (i.e., PT and DTL). These data, although circumstantial, are consistent with a role for TRPV4 in the response to anisotonicity in the mammalian kidney.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00397.2003DOI Listing
July 2004