Publications by authors named "Michaela Kneissel"

52 Publications

Cortical bone adaptation to a moderate level of mechanical loading in male Sost deficient mice.

Sci Rep 2020 12 18;10(1):22299. Epub 2020 Dec 18.

Research Centre, Shriners Hospital for Children-Canada, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada.

Loss-of-function mutations in the Sost gene lead to high bone mass phenotypes. Pharmacological inhibition of Sost/sclerostin provides a new drug strategy for treating osteoporosis. Questions remain as to how physical activity may affect bone mass under sclerostin inhibition and if that effect differs between males and females. We previously observed in female Sost knockout (KO) mice an enhanced cortical bone formation response to a moderate level of applied loading (900 με at the tibial midshaft). The purpose of the present study was to examine cortical bone adaptation to the same strain level applied to male Sost KO mice. Strain-matched in vivo compressive loading was applied to the tibiae of 10-, 26- and 52-week-old male Sost KO and littermate control (LC) mice. The effect of tibial loading on bone (re)modeling was measured by microCT, 3D time-lapse in vivo morphometry, 2D histomorphometry and gene expression analyses. As expected, Sost deficiency led to high cortical bone mass in 10- and 26-week-old male mice as a result of increased bone formation. However, the enhanced bone formation associated with Sost deficiency did not appear to diminish with skeletal maturation. An increase in bone resorption was observed with skeletal maturation in male LC and Sost KO mice. Two weeks of in vivo loading (900 με at the tibial midshaft) induced only a mild anabolic response in 10- and 26-week-old male mice, independent of Sost deficiency. A decrease in the Wnt inhibitor Dkk1 expression was observed 3 h after loading in 52-week-old Sost KO and LC mice, and an increase in Lef1 expression was observed 8 h after loading in 10-week-old Sost KO mice. The current results suggest that long-term inhibition of sclerostin in male mice does not influence the adaptive response of cortical bone to moderate levels of loading. In contrast with our previous strain-matched study in females showing enhanced bone responses with Sost ablation, these results in males indicate that the influence of Sost deficiency on the cortical bone formation response to a moderate level of loading differs between males and females. Clinical studies examining antibodies to inhibit sclerostin may need to consider that the efficacy of additional physical activity regimens may be sex dependent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-79098-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749116PMC
December 2020

Effects of Long-Term Sclerostin Deficiency on Trabecular Bone Mass and Adaption to Limb Loading Differ in Male and Female Mice.

Calcif Tissue Int 2020 04 23;106(4):415-430. Epub 2019 Dec 23.

Department of Pediatric Surgery, McGill University, Montreal, Canada.

A new therapeutic option to treat osteoporosis is focused on Wnt signaling and its inhibitor sclerostin, a product of the Sost gene. In this work, we study the effect of sclerostin deficiency on trabecular bone formation and resorption in male and female mice and whether it affects mechano-responsiveness. Male and female 10- and 26-week-old Sost knockout (KO) and littermate controls (LCs) were subjected to in vivo mechanical loading of the left tibia for 2 weeks. The right tibia served as internal control. The mice were imaged using in vivo micro-computed tomography at days 0, 5, 10, and 15 and tibiae were collected for histomorphometric analyses after euthanasia. Histomorphometry and micro-CT-based 3D time-lapse morphometry revealed an anabolic and anti-catabolic effect of Sost deficiency although increased trabecular bone resorption accompanied by diminished trabecular bone formation occurred with age. Loading led to diminished resorption in adult female but not in male mice. A net gain in bone volume could be achieved with mechanical loading in Sost KO adult female mice, which occurred through a further reduction in resorbed bone volume. Our data show that sclerostin deficiency has a particularly positive effect in adult female mice. Sclerostin antibodies are approved to treat postmenopausal women with high risk of osteoporotic fractures. Further studies are required to clarify whether both sexes benefit equally from sclerostin inhibition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-019-00648-4DOI Listing
April 2020

Skeletal muscle in MuRF1 null mice is not spared in low-gravity conditions, indicating atrophy proceeds by unique mechanisms in space.

Sci Rep 2019 06 28;9(1):9397. Epub 2019 Jun 28.

Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA.

Microgravity exposure is associated with loss of muscle mass and strength. The E3 ubiquitin ligase MuRF1 plays an integral role in degrading the contractile apparatus of skeletal muscle; MuRF1 null (KO) mice have shown protection in ground-based models of muscle atrophy. In contrast, MuRF1 KO mice subjected to 21 days of microgravity on the International Space Station (ISS) were not protected from muscle atrophy. In a time course experiment microgravity-induced muscle loss on the ISS showed MuRF1 gene expression was not upregulated. A comparison of the soleus transcriptome profiles between spaceflight and a publicly available data set for hindlimb suspension, a claimed surrogate model of microgravity, showed only marginal commonalities between the models. These findings demonstrate spaceflight induced atrophy is unique, and that understanding of effects of space requires study situated beyond the Earth's mesosphere.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-45821-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599046PMC
June 2019

Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume.

Calcif Tissue Int 2018 09 29;103(3):298-310. Epub 2018 May 29.

Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.

Dickkopf-1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway and decreased expression of either results in increased bone formation and mass. As both affect the same signaling pathway, we aimed to elucidate the redundancy and/or compensation of sclerostin and DKK1. Weekly sclerostin antibody (Scl-Ab) was used to treat 9-week-old female Dkk1 KO (Dkk1:Wnt3) mice and compared to Scl-Ab-treated wild-type mice as well as vehicle-treated Dkk1 KO and wild-type animals. While Wnt3 heterozygote (Wnt3) mice show no bone phenotype, Scl-Ab and vehicle-treated control groups of this genotype were included. Specimens were harvested after 3 weeks for microCT, bone histomorphometry, anti-sclerostin immunohistochemistry, and biomechanical testing. Scl-Ab enhanced bone anabolism in all treatment groups, but with synergistic enhancement seen in the cancellous compartment of Dkk1 KO mice (bone volume + 55% Dkk1 KO p < 0.01; + 22% wild type p < 0.05). Scl-Ab treatment produced less marked increases in cortical bone of the tibiae, with anabolic effects similar across genotypes. Mechanical testing confirmed that Scl-Ab improved strength across all genotypes; however, no enhancement was seen within Dkk1 KO mice. Dynamic bone labeling showed that Scl-Ab treatment was associated with increased bone formation, regardless of genotype. Immunohistochemical staining for sclerostin protein indicated no differences in the Dkk1 KO mice, indicating that the increased Wnt signaling associated with DKK1 deficiency was not compensated by upregulation of sclerostin protein. These data suggest complex interactions between Wnt signaling factors in bone, but critically illustrate synergy between DKK1 deficiency and Scl-Ab treatment. These data support the application of dual-targeted therapeutics in the modulation of bone anabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-018-0420-6DOI Listing
September 2018

deficiency leads to reduced mechanical strains at the tibia midshaft in strain-matched loading experiments in mice.

J R Soc Interface 2018 04;15(141)

Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany

Sclerostin, a product of the gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. knockout (KO) mice were examined to gain insight into how long-term deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched KO and LC mice or between young and adult animals within the same genotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsif.2018.0012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938586PMC
April 2018

Tough Composite Hydrogels with High Loading and Local Release of Biological Drugs.

Adv Healthc Mater 2018 05 14;7(9):e1701393. Epub 2018 Feb 14.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.

Hydrogels are under active development for controlled drug delivery, but their clinical translation is limited by low drug loading capacity, deficiencies in mechanical toughness and storage stability, and poor control over the drug release that often results in burst release and short release duration. This work reports a design of composite clay hydrogels, which simultaneously achieve a spectrum of mechanical, storage, and drug loading/releasing properties to address the critical needs from translational perspectives. The clay nanoparticles provide large surface areas to adsorb biological drugs, and assemble into microparticles that are physically trapped within and toughen hydrogel networks. The composite hydrogels demonstrate feasibility of storage, and extended release of large quantities of an insulin-like growth factor-1 mimetic protein (8 mg mL ) over four weeks. The release rate is primarily governed by ionic exchange and can be upregulated by low pH, which is typical for injured tissues. A rodent model of Achilles tendon injury is used to demonstrate that the composite hydrogels allow for highly extended and localized release of biological drugs in vivo, while demonstrating biodegradation and biocompatibility. These attributes make the composite hydrogel a promising system for drug delivery and regenerative medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201701393DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192424PMC
May 2018

Sclerostin deficiency modifies the development of CKD-MBD in mice.

Bone 2018 02 21;107:115-123. Epub 2017 Nov 21.

Department of Cardiology, University Hospital of the RWTH Aachen, Germany.

Sclerostin is a soluble antagonist of canonical Wnt signaling and a strong inhibitor of bone formation. We present experimental data on the role of sclerostin in chronic kidney disease - bone mineral disorder (CKD-MBD).

Methods: We performed 5/6 nephrectomies in 36-week-old sclerostin-deficient (SOST) B6-mice and in C57BL/6J wildtype (WT) mice. Animals received a high phosphate diet for 11weeks. The bones were analyzed by high-resolution micro-computed tomography (μCT) and quantitative bone histomorphometry. Aortic tissue was analyzed regarding the extent of vascular calcification.

Results: All nephrectomized mice had severe renal failure, and parathyroid hormone was highly increased compared to corresponding sham animals. All SOST animals revealed the expected high bone mass phenotype. Overall, the bone compartment in WT and SOST mice responded similarly to nephrectomy. In uremic WT animals, μCT data at both the distal femur and lumbar spine revealed significantly increased trabecular volume compared to non-uremic WTs. In SOST mice, the differences between trabecular bone volume were less pronounced when comparing uremic with sham animals. Cortical thickness and cortical bone density at the distal femur decreased significantly and comparably in both genotypes after 5/6 nephrectomy compared to sham animals (cortical bone density -18% and cortical thickness -32%). Overall, 5/6 nephrectomy and concomitant hyperparathyroidism led to a genotype-independent loss of cortical bone volume and density. Overt vascular calcification was not detectable in either of the genotypes.

Conclusion: Renal osteodystrophy changes were more pronounced in WT mice than in SOST mice. The high bone mass phenotype of sclerostin deficiency was detectable also in the setting of chronic renal failure with severe secondary hyperparathyroidism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2017.11.015DOI Listing
February 2018

Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading.

J Bone Miner Res 2018 03 29;33(3):486-498. Epub 2017 Nov 29.

Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia.

Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy. To address this, we carried out a 2-week study of tibial cyclic compressive loading on C57Bl/6 mice treated with vehicle or 100 mg/kg/wk Scl-Ab. Increases in bone volume, density, and dynamic bone formation were found with loading, and the anabolic response was further increased by the combination of load and Scl-Ab. To investigate the underlying mechanism, gene profiling by RNA sequencing (RNAseq) was performed on tibias isolated from mice from all four experimental groups. Major alterations in Wnt/β-catenin gene expression were found with tibial loading, however not with Scl-Ab treatment alone. Notably, the combination of load and Scl-Ab elicited a synergistic response from a number of specific Wnt-related and mechanotransduction factors. An unexpected finding was significant upregulation of factors in the Rho GTPase signaling pathway with combination treatment. In summary, combination therapy had a more profound anabolic response than either Scl-Ab or loading treatment alone. The Wnt/β-catenin and Rho GTPase pathways were implicated within bone mechanotransduction and support the concept that bone mechanotransduction is likely to encompass a number of interconnected signaling pathways. © 2017 American Society for Bone and Mineral Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.3330DOI Listing
March 2018

Loading-Induced Reduction in Sclerostin as a Mechanism of Subchondral Bone Plate Sclerosis in Mouse Knee Joints During Late-Stage Osteoarthritis.

Arthritis Rheumatol 2018 02 29;70(2):230-241. Epub 2017 Dec 29.

University of Pennsylvania, Philadelphia, and Union Hospital, Huazhong University of Science and Technology, Wuhan, China.

Objective: To establish an unbiased, 3-dimensional (3-D) approach that quantifies subchondral bone plate (SBP) changes in mouse joints, and to investigate the mechanism that mediates SBP sclerosis at a late stage of osteoarthritis (OA).

Methods: A new micro-computed tomography (micro-CT) protocol was developed to characterize the entire thickness of the SBP in the distal femur of a normal mouse knee. Four mouse models of severe joint OA were generated: cartilage-specific Egfr-knockout (Egfr-CKO) mice at 2 months after surgical destabilization of the medial meniscus (DMM), Egfr-CKO mice with aging-related spontaneous OA, wild-type (WT) mice at 10 months after DMM, and WT mice at 14 weeks after DMM plus hemisectomy of the meniscus (DMMH) surgery. As an additional model, mice with knockout of the sclerostin gene (Sost-KO) were subjected to DMMH surgery. Knee joints were examined by micro-CT, histology, and immunohistochemical analyses.

Results: Examination of the mouse distal femur by 3-D micro-CT revealed a positive correlation between SBP thickness and the loading status in normal knees. In all 4 mouse models of late-stage OA, SBP sclerosis was restricted to the areas under severely eroded articular cartilage. This was accompanied by elevated bone formation at the bone marrow side of the SBP and a drastic reduction in the levels of sclerostin in osteocytes within the SBP. Unlike in WT mice, no further increase in the thickness of the SBP was observed in response to DMMH in Sost-KO mice.

Conclusion: Since focal stress on the SBP underlying sites of cartilage damage increases during late stages of OA, these findings establish mechanical loading-induced attenuation of sclerostin expression and elevation of bone formation along the SBP surface as the major mechanisms characterizing subchondral bone phenotypes associated with severe late-stage OA in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.40351DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788711PMC
February 2018

Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression.

Sci Rep 2017 08 25;7(1):9435. Epub 2017 Aug 25.

Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Bone adaptation optimizes mass and structure, but the mechano-response is already reduced at maturation. Downregulation of sclerostin was believed to be a mandatory step in mechano-adaptation, but in young mice it was shown that load-induced formation can occur independent of sclerostin, a product of the Sost gene. We hypothesized that the bone formation and resorption response to loading is not affected by Sost deficiency, but is age-specific. Our findings indicate that the anabolic response to in vivo tibial loading was reduced at maturation in Sost Knockout (KO) and littermate control (LC) mice. Age affected all anabolic and catabolic parameters and altered Sost and Wnt target gene expression. While load-induced cortical resorption was similar between genotypes, loading-induced gains in mineralizing surface was enhanced in Sost KO compared to LC mice. Loading led to a downregulation in expression of the Wnt inhibitor Dkk1. Expression of Dkk1 was greater in both control and loaded limbs of Sost KO compared to LC mice suggesting a compensatory role in the absence of Sost. These data suggest physical activity could enhance bone mass concurrently with sclerostin-neutralizing antibodies, but treatment strategies should consider the influence of age on ultimate load-induced bone mass gains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-09653-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572735PMC
August 2017

Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma.

Blood 2017 06 17;129(26):3452-3464. Epub 2017 May 17.

The Garvan Institute of Medical Research, Sydney, NSW, Australia.

Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2017-03-773341DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492093PMC
June 2017

Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta.

Bone 2017 Aug 29;101:96-103. Epub 2017 Apr 29.

Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.

In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA), (3) Scl-Ab given 50mg/kg IV weekly (Scl-Ab), or (4) a combination of both (Scl-Ab/ZA). Functional outcomes were prioritized and included bone mineral density (BMD), bone microarchitecture, long bone bending strength, and vertebral compression strength. By dual-energy absorptiometry, Scl-Ab treatment alone had no effect on tibial BMD, while ZA and Scl-Ab/ZA significantly enhanced BMD by week 4 (+16% and +27% respectively, P<0.05). Scl-Ab/ZA treatment also led to increases in cortical thickness and tissue mineral density, and restored the tibial 4-point bending strength to that of control WT mice. In the spine, all treatments increased compression strength over controls, but only the combined group reached the strength of WT controls. Scl-Ab showed greater anabolic effects in the trabecular bone than in cortical bone. In summary, the Scl-Ab/ZA intervention was superior to either treatment alone in this OI mouse model, however further studies are required to establish its efficacy in other preclinical and clinical scenarios.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2017.04.016DOI Listing
August 2017

The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

J Cell Physiol 2018 Feb 6;233(2):1156-1167. Epub 2017 Jun 6.

Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.

The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.25976DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664178PMC
February 2018

Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone-Forming Cells and Their Progenitors Through Distinct Mechanisms.

J Bone Miner Res 2017 Feb 20;32(2):360-372. Epub 2016 Oct 20.

Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/β-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/β-catenin signaling in bone. Together with the fact that focal radiation increases sclerostin amount in bone, we sought to determine whether weekly treatment with Scl-Ab would prevent focal radiotherapy-induced osteoporosis in mice. Micro-CT and histomorphometric analyses demonstrated that Scl-Ab blocked trabecular bone structural deterioration after radiation by partially preserving osteoblast number and activity. Consistently, trabecular bone in sclerostin null mice was resistant to radiation via the same mechanism. Scl-Ab accelerated DNA repair in osteoblasts after radiation by reducing the number of γ-H2AX foci, a DNA double-strand break marker, and increasing the amount of Ku70, a DNA repair protein, thus protecting osteoblasts from radiation-induced apoptosis. In osteocytes, apart from using similar DNA repair mechanism to rescue osteocyte apoptosis, Scl-Ab restored the osteocyte canaliculi structure that was otherwise damaged by radiation. Using a lineage tracing approach that labels all mesenchymal lineage cells in the endosteal bone marrow, we demonstrated that radiation damage to mesenchymal progenitors mainly involves shifting their fate to adipocytes and arresting their proliferation ability but not inducing apoptosis, which are different mechanisms from radiation damage to mature bone forming cells. Scl-Ab treatment partially blocked the lineage shift but had no effect on the loss of proliferation potential. Taken together, our studies provide proof-of-principle evidence for a novel use of Scl-Ab as a therapeutic treatment for radiation-induced osteoporosis and establish molecular and cellular mechanisms that support such treatment. © 2016 American Society for Bone and Mineral Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2996DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476363PMC
February 2017

Only minor differences in renal osteodystrophy features between wild-type and sclerostin knockout mice with chronic kidney disease.

Kidney Int 2016 10 12;90(4):828-34. Epub 2016 Aug 12.

Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA.

Renal osteodystrophy affects the majority of patients with advanced chronic kidney disease (CKD) and is characterized by progressive bone loss. This study evaluated the effects of sclerostin knockout on bone in a murine model of severe, surgically induced CKD in both sclerostin knockout and wild-type mice. Mice of both genotypes with normal kidney function served as controls. Tibiae were analyzed using micro-computed tomography, and lumbar vertebrae were analyzed by histomorphometry. Results were tested for statistical significance by 2-way ANOVA to investigate whether bone of the knockout mice reacted differently to CKD compared with bone of wild-type mice. In the tibiae, there was no difference after creation of CKD between wild-type and knockout animals for cortical thickness or cross-sectional moment of inertia. Increases in cortical porosity induced by CKD differed significantly between genotypes in the tibial metaphysis but not in the diaphysis. In the trabecular compartment, no difference in reaction to CKD between genotypes was found for bone volume, trabecular number, trabecular thickness, and trabecular separation. In the lumbar vertebrae, significant differences in response to CKD between wild-type and knockout mice were seen for both bone volume and trabecular thickness. Osteoblast parameters did not differ significantly, whereas osteoclast numbers significantly increased in the wild-type but significantly decreased in knockout mice with CKD. No differences in response to CKD between genotypes were found for bone formation rate or mineral apposition rate. Thus, complete absence of sclerostin has only minor effects on CKD-induced bone loss in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2016.06.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530366PMC
October 2016

Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible.

Hum Mol Genet 2016 07 3;25(14):2997-3010. Epub 2016 Jun 3.

INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France

Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3 mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel's) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel's and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3 mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw153DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181594PMC
July 2016

Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction.

Sci Transl Med 2016 Mar 16;8(330):330ra35. Epub 2016 Mar 16.

Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, 48149 Muenster, Germany.

Sclerostin, an inhibitor of the Wnt/β-catenin pathway, has anti-anabolic effects on bone formation by negatively regulating osteoblast differentiation. Mutations in the human sclerostin gene (SOST) lead to sclerosteosis with progressive skeletal overgrowth, whereas sclerostin-deficient (Sost(-/-)) mice exhibit increased bone mass and strength. Therefore, antibody-mediated inhibition of sclerostin is currently being clinically evaluated for the treatment of postmenopausal osteoporosis in humans. We report that in chronic TNFα (tumor necrosis factor α)-dependent arthritis, fibroblast-like synoviocytes constitute a major source of sclerostin and that either the lack of sclerostin or its antibody-mediated inhibition leads to an acceleration of rheumatoid arthritis (RA)-like disease in human TNFα transgenic (hTNFtg) mice with enhanced pannus formation and joint destruction. Inhibition of sclerostin also failed to improve clinical signs and joint destruction in the partially TNFα-dependent glucose-6-phosphate isomerase-induced arthritis mouse model, but ameliorated disease severity in K/BxN serum transfer-induced arthritis mouse model, which is independent of TNF receptor signaling, thus suggesting a specific role for sclerostin in TNFα signaling. Sclerostin effectively blocked TNFα- but not interleukin-1-induced activation of p38, a key step in arthritis development, pointing to a previously unrealized protective role of sclerostin in TNF-mediated chronic inflammation. The possibility of anti-sclerostin antibody treatment worsening clinical RA outcome under chronic TNFα-dependent inflammatory conditions in mice means that caution should be taken both when considering such treatment for inflammatory bone loss in RA and when using anti-sclerostin antibodies in patients with TNFα-dependent comorbidities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aac4351DOI Listing
March 2016

Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model.

J Clin Invest 2016 05 11;126(5):1871-84. Epub 2016 Apr 11.

Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI83926DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855917PMC
May 2016

Treatment of a mouse model of ankylosing spondylitis with exogenous sclerostin has no effect on disease progression.

BMC Musculoskelet Disord 2015 Nov 26;16:368. Epub 2015 Nov 26.

The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.

Background: No treatment to date is available which specifically targets bone formation in ankylosing spondylitis (AS). Several recent studies have shown that sclerostin (SOST), a Wnt inhibitor specific to osteocytes and chondrocytes, is down-regulated in AS patients. This suggests Wnt signalling may be upregulated, and application of exogenous recombinant SOST (rSOST) may inhibit Wnt signalling and slow pathological bone formation.

Methods: The proteoglycan-induced spondylitis (PGISp) mouse model in which we have previously demonstrated downregulated SOST expression, was used for this study. Mice were injected with 2.5 ug rSOST/day for a period of 8 weeks following induction of disease. Axial skeleton disease development was assessed by histology and skeletal changes examined using DEXA.

Results: rSOST treatment had no effect on peripheral or axial disease development, bone density or disease severity. Injected rSOST was stable over 8 h and residual levels were evident 24 h after injection, resulting in a cumulative increase in SOST serum levels over the treatment time course. Immunohistochemical examination of SOST levels within the joints in non-rSOST treated PGISp mice showed a significant decrease in the percentage of positive osteocytes in the unaffected joints compared to the affected joints, while no difference was seen in rSOST treated mice. This suggests that rSOST treatment increases the number of SOST-positive osteocytes in unaffected joints but not affected joints, despite having no impact on the number of joints affected by disease.

Conclusions: Although not disease-modifying, rSOST treatment did appear to regulate SOST levels in the joints suggesting biological activity. Further dose response studies are required and SOST may require modifications to improve its bone targeting ability in order to affect tissue formation to a meaningful level in this model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12891-015-0823-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662039PMC
November 2015

Introduction special issue.

Bone 2015 Nov 23;80. Epub 2015 Jun 23.

Institutes for BioMedical Research (NIBR), Cambridge, MA UNITED STATES.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2015.06.015DOI Listing
November 2015

Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy.

J Bone Miner Res 2015 Mar;30(3):499-509

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roduebush Veterans Affairs Medical Center, Indianapolis, IN, USA.

Chronic kidney disease (CKD) is associated with abnormalities in bone quantity and quality, leading to increased fractures. Recent studies suggest abnormalities of Wnt signaling in animal models of CKD and elevated sclerostin levels in patients with CKD. The goal of this study was to evaluate the effectiveness of anti-sclerostin antibody treatment in an animal model of progressive CKD with low and high parathyroid hormone (PTH) levels. Cy/+ male rats (CKD) were treated without or with calcium in the drinking water at 25 weeks of age to stratify the animals into high PTH and low PTH groups, respectively, by 30 weeks. Animals were then treated with anti-sclerostin antibody at 100 mg/kg i.v. weekly for 5 doses, a single 20-µg/kg subcutaneous dose of zoledronic acid, or no treatment, and were then euthanized at 35 weeks. As a positive control, the efficacy of anti-sclerostin antibody treatment was also evaluated in normal littermates. The results demonstrated that the CKD animals with high PTH had lower calcium, higher phosphorus, and lower FGF23 compared to the CKD animals with low PTH. Treatment with anti-sclerostin antibody had no effect on any of the biochemistries, whereas zoledronic acid lowered dkk-1 levels. The anti-sclerostin antibody increased trabecular bone volume/total volume (BV/TV) and trabecular mineralization surface in animals with low PTH, but not in animals with high PTH. Neither anti-sclerostin antibody nor zoledronic acid improved biomechanical properties in the animals. Cortical porosity was severe in high-PTH animals and was unaffected by either treatment. In contrast, in normal animals treated with anti-sclerostin antibody, there was an improvement in bone volume, cortical geometry, and biomechanical properties. In summary, this is the first study to test the efficacy of anti-sclerostin antibody treatment on animals with advanced CKD. We found efficacy in improving bone properties only when the PTH levels were low.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2372DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333005PMC
March 2015

Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels.

Proc Natl Acad Sci U S A 2014 Dec 17;111(48):E5187-95. Epub 2014 Nov 17.

Musculoskeletal Disease Area,

We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4-agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1413828111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260537PMC
December 2014

Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

Bone 2014 Sep 19;66:182-8. Epub 2014 Jun 19.

Shriners Hospital for Children, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada. Electronic address:

Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2014.06.015DOI Listing
September 2014

AXT914 a novel, orally-active parathyroid hormone-releasing drug in two early studies of healthy volunteers and postmenopausal women.

Bone 2014 Jul 24;64:204-10. Epub 2014 Apr 24.

Novartis Institutes for Biomedical Research, Basel, Switzerland and Cambridge, MA, USA. Electronic address:

Antagonism of the calcium-sensing receptor in the parathyroid gland leads to parathyroid hormone (PTH) release. Calcilytics are a new class of molecules designed to exploit this mechanism. In order to mimic the known bone-anabolic pharmacokinetic (PK) profile of s.c. administered PTH, such molecules must trigger sharp, transient and robust release of PTH. The results of two early clinical studies with the orally-active calcilytic AXT914, a quinazolin-2ne derivative are reported. These were GCP-compliant, single and multiple dose studies of PK/PD and tolerability in healthy volunteers and postmenopausal women. The first study, examined single ascending doses (4 to 120 mg) and limited multiple doses (60 or 120 mgq.d. for 12 days) of AXT914. The second study was a randomized, double-blind, active- and placebo-controlled, 4-week repeat-dose parallel group study of healthy postmenopausal women (45 and 60 mg AXT914, placebo, 20 μg Forteo/teriparatide/PTH(1-34) fragment). AXT914 was well tolerated at all doses and reproducibly induced the desired PTH-release profiles. Yet, 4 weeks of 45 or 60 mg AXT914 did not result in the expected changes in circulating bone biomarkers seen with teriparatide. However total serum calcium levels increased above baseline in the 45 and 60 mg AXT914 treatment groups (8.0% and 10.7%, respectively), compared to that in the teriparatide and placebo groups (1.3% and 1.0%, respectively). Thus the trial was terminated after a planned interim analysis due to lack of effect on bone formation biomarkers and dose-limiting effects on serum calcium. In conclusion, AXT914 was well tolerated but the observed transient and reproducible PTH-release after repeat oral administration of AXT914 which showed an exposure profile close to that of s c. PTH, did not translate into a bone anabolic response and was associated with a persistent dose-related increase in serum calcium concentrations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2014.04.015DOI Listing
July 2014

Sclerostin deficiency is linked to altered bone composition.

J Bone Miner Res 2014 Oct;29(10):2144-51

Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria.

High bone mass in animals and humans with sclerostin deficiency is associated with increased bone strength, which is not the case for all disorders with high bone mineral density, some of which are even associated with fragility fractures owing to unfavorable bone composition. In the current study we investigated whether alterations in bone composition may contribute to the bone strength characteristics associated with lack of sclerostin. We examined cortical bone of Sost-knockout (KO) mice (n = 9, 16 weeks old) and sclerosteosis patients (young [4 to 14 years], n = 4 and adults [24 and 43 years], n = 2) by quantitative backscattered electron imaging and Raman microspectroscopy and compared it to bone from wild-type mice and healthy subjects, respectively. In Sost-KO mice endocortical bone exhibited altered bone composition, whereas subperiosteal bone was unchanged. When comparing endocortical bone tissue of identical tissue age as defined by sequential dual fluorochrome labeling the average bone matrix mineralization was reduced -1.9% (p < 0.0001, younger tissue age) and -1.5% (p < 0.05, older tissue age), and the relative proteoglycan content was significantly increased. Similarly, bone matrix mineralization density distribution was also shifted toward lower matrix mineralization in surgical samples of compact bone of sclerosteosis patients. This was associated with an increase in mineralization heterogeneity in the young population. In addition, and consistently, the relative proteoglycan content was increased. In conclusion, we observed decreased matrix mineralization and increased relative proteoglycan content in bone subcompartments of Sost-KO mice-a finding that translated into sclerosteosis patients. We hypothesize that the altered bone composition contributes to the increased bone strength of patients with sclerostin deficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2259DOI Listing
October 2014

Dental and periodontal phenotype in sclerostin knockout mice.

Int J Oral Sci 2014 Jun 4;6(2):70-6. Epub 2014 Apr 4.

1] Department of Oral Surgery, Medical University of Vienna, Vienna, Austria [2] Austrian Cluster for Tissue Regeneration, Vienna, Austria [3] Laboratory of Oral Cell Biology, School of Dental Medicine, University of Berne, Berne, Switzerland.

Sclerostin is a Wnt signalling antagonist that controls bone metabolism. Sclerostin is expressed by osteocytes and cementocytes; however, its role in the formation of dental structures remains unclear. Here, we analysed the mandibles of sclerostin knockout mice to determine the influence of sclerostin on dental structures and dimensions using histomorphometry and micro-computed tomography (μCT) imaging. μCT and histomorphometric analyses were performed on the first lower molar and its surrounding structures in mice lacking a functional sclerostin gene and in wild-type controls. μCT on six animals in each group revealed that the dimension of the basal bone as well as the coronal and apical part of alveolar part increased in the sclerostin knockout mice. No significant differences were observed for the tooth and pulp chamber volume. Descriptive histomorphometric analyses of four wild-type and three sclerostin knockout mice demonstrated an increased width of the cementum and a concomitant moderate decrease in the periodontal space width. Taken together, these results suggest that the lack of sclerostin mainly alters the bone and cementum phenotypes rather than producing abnormalities in tooth structures such as dentin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ijos.2014.12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130054PMC
June 2014

Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity.

J Bone Miner Res 2014 Jan;29(1):29-42

Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland.

The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low-density lipoprotein receptor-related protein (LRP) 5/6 Wnt co-receptors, thereby inhibiting Wnt/β-catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis-pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost(-/-) ), Lrp5 (Lrp5(-/-) ), or both (Sost(-/-) ;Lrp5(-/-) ) to elucidate the mechanism of action of Sost in vivo. Sost deficiency-induced bone gain was significantly blunted in Sost(-/-) ;Lrp5(-/-) mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost(-/-) ;Lrp5(-/-) mice and most bone parameters were elevated relative to wild-type. To test whether the remaining bone increases in Sost(-/-) ;Lrp5(-/-) animals depend on Lrp6, we treated wild-type, Sost(-/-) , and Sost(-/-) ;Lrp5(-/-) mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class-mediated Lrp6 signaling reduced cancellous bone mass and density in wild-type mice. Surprisingly, it reversed the abnormal bone gain in Sost(-/-) and Sost(-/-) ;Lrp5(-/-) mice to wild-type levels irrespective of enhancement or blockage of Wnt3a class-mediated Lrp6 activity. Thus, whereas Sost deficiency-induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class-induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss-of-function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2059DOI Listing
January 2014

Preface: the osteocyte.

Bone 2013 Jun 26;54(2):181. Epub 2013 Feb 26.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2013.02.018DOI Listing
June 2013

WNT signaling in bone homeostasis and disease: from human mutations to treatments.

Nat Med 2013 Feb 6;19(2):179-92. Epub 2013 Feb 6.

Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.

Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm.3074DOI Listing
February 2013

Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.

J Bone Miner Res 2013 Apr;28(4):899-911

Novartis Institutes for BioMedical Research, Basel, Switzerland.

Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.1810DOI Listing
April 2013